
Multiparty Computation Schemes: Physical

Security and Applications in Secure

Implementations

Mohammad Hashemi

A Dissertation
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy

in
Electrical and Computer Engineering

May 2025

APPROVED:

Professor Fatemeh Ganji, Advisor, Worcester Polytechnic Institute

Professor Berk Sunar, Committee Member, Worcester Polytechnic Institute

Professor Dominic Forte, Committee Member, University of Florida

Professor Daniel Holcomb, Committee Member, University of Massachusetts
Amherst

I dedicate this dissertation to my beloved mother and father, whose

unconditional love and support have been the foundation of my every

success. To my brothers and in-laws, thank you for your constant presence

and encouragement during the ups and downs of this journey. Most of all, I

dedicate this work to my incredible wife, whose love, patience, and

unwavering belief in me have been my greatest source of strength. She stood

by me through every late night, every setback, and every milestone,

celebrating the victories and lifting me through the challenges. Her

sacrifices, kindness, and boundless encouragement gave me the courage to

keep moving forward. This achievement is as much hers as it is mine.

i

Abstract

The increasing reliance on cloud-based computation, machine learning ser-

vices, and collaborative design tools has introduced significant challenges in

ensuring data confidentiality and computational integrity. Although Secure

Multiparty Computation (MPC) and Fully Homomorphic Encryption (FHE)

offer strong theoretical guarantees, their practical adoption remains limited

due to performance bottlenecks and exposure to physical attacks such as

side-channel leakage and fault injection.

This dissertation addresses these challenges through a set of hardware-

assisted secure computation frameworks that improve both efficiency and

robustness. GarbledEDA introduces a privacy-preserving electronic design

automation solution that secures intellectual property during hardware ver-

ification using optimized garbled circuits. GuardianMPC builds on this

foundation by accelerating secure neural network inference through paral-

lel garbled circuit evaluation and customized hardware modules for oblivious

transfer, while also incorporating backdoor detection mechanisms to ensure

model integrity. To highlight practical vulnerabilities, we present Goblin,

a timing side-channel attack that targets widely-used MPC frameworks, re-

vealing how variations in execution time can be exploited to recover secret

ii

inputs. FaultyGarble demonstrates that laser fault injection can extract pro-

prietary neural network parameters from garbled circuit-based secure infer-

ence systems, exposing the limitations of cryptographic guarantees in the

presence of physical adversaries. We also present Bake It Till You Make

It!, a novel temperature-based side-channel attack that shows how controlled

heating can bypass masking defenses in secure hardware implementations.

To address such risks, we propose HWGN2, a secure inference framework

based on secure function evaluation, which is designed to resist power, tim-

ing, and electromagnetic side-channel attacks. Finally, Garblet introduces a

chiplet-aware architecture for secure MPC deployment across heterogeneous

hardware platforms. By distributing garbled computations and integrating

hardware-level optimizations, Garblet reduces communication overhead and

maintains strong security, even when operating across untrusted components.

These contributions demonstrate that secure computation in modern systems

requires a multi-layered approach, combining cryptographic techniques with

physical defenses and architectural awareness. This dissertation advances

the state of the art by bridging the gap between theoretical protocols and

practical, secure implementations that can withstand real-world adversaries

and physical threats.

iii

Acknowledgments

I am deeply grateful to my advisor, Professor Fatemeh Ganji, for her unwa-

vering support, insightful guidance, and continuous encouragement through-

out my Ph.D. studies. Her mentorship has been instrumental not only in

shaping the direction of my research but also in refining the way I approach

challenges with critical thought.

I would also like to sincerely thank my dissertation committee members,

Professor Berk Sunar, Professor Domenic Forte, and Professor Daniel Hol-

comb, for their valuable feedback, thoughtful insights, and generous contri-

butions of time and expertise. Their input has been vital in enhancing the

quality and depth of this work.

This research was supported by the Semiconductor Research Corporation

(SRC) under Task IDs 2991.001 and 2992.001, and the National Science

Foundation (NSF) under award number 2138420.

I am especially thankful to my colleagues and friends at Vernam Lab and

the University of Florida for their collaboration and supportive environment

that made this journey both productive and memorable.

iv

Contents

1 Publications 1

2 Contribution 3

2.0.1 Publication 1 . 3

2.0.2 Publication 2 . 3

2.0.3 Publication 3 . 4

2.0.4 Publication 4 . 5

2.0.5 Publication 5 . 5

2.0.6 Publication 6 . 6

2.0.7 Publication 7 . 6

3 Introduction 8

3.1 Motivation . 8

3.2 The Expanding Threat Landscape in Secure Computation . . 10

3.3 MPC as a Secure Computation Model 13

3.3.1 Challenges in Secure Implementations: Side-Channel

and Fault Attacks . 15

v

3.4 Research Contributions and Scope 17

3.4.1 Summarizing the Key Gaps in Prior Work 17

3.5 Dissertation Organization . 21

3.6 Discussion . 22

4 Chapter 4: Background and Preliminaries 24

4.1 Secure Function Evaluation and Private Function Evaluation . 24

4.1.1 Definition of SFE and PFE 24

4.2 Yao’s GC . 24

4.2.1 Mathematical Definition of GC 25

4.2.2 Garbling Process . 26

4.2.3 Evaluation Process . 27

4.3 Optimizations of GC . 27

4.3.1 Free-XOR Optimization 28

4.3.2 Half-Gates Optimization 31

4.3.3 Row Reduction Optimization 33

4.4 Oblivious Transfer . 36

4.5 Adversary Models in Secure Computation 38

4.5.1 Passive and Honest-but-Curious Adversary Model . . . 39

4.5.2 Active and Malicious Adversary Model 39

4.6 Side-Channel Attacks: Leakage Sources and Analysis 40

4.6.1 Side-Channel Leakage: Sources and Classification . . . 41

4.7 Side-Channel Attacks and Evaluation 44

vi

4.7.1 Differential Power Analysis 44

4.8 Side-Channel Evaluation Techniques 46

4.8.1 Welch’s t-Test for Leakage Detection 46

4.9 Fault Injection Attacks . 48

4.9.1 Mathematical Model of Fault Injection 49

4.9.2 Types of Fault Injection Attacks 49

4.9.3 Fault Injection Methods 50

4.10 Cache Architecture . 53

4.10.1 Cache Hierarchy and Levels 53

4.10.2 Cache Inclusion Policies 54

4.10.3 Cache Coherence in Multi-Core Processors 54

4.10.4 Cache Replacement and Eviction Policies 55

4.10.5 Memory Access and Prefetching Mechanisms 56

4.11 Neural Networks: Foundations and Architectures 56

4.11.1 Feedforward and Deep Neural Networks 57

4.11.2 Training Neural Networks: Backpropagation and Op-

timization . 57

4.11.3 Activation Functions and Their Role 58

4.11.4 Convolutional Neural Networks 58

4.11.5 Neural Network Architectures and Applications 58

4.12 Clustering . 59

4.13 Chiplet-based Processing . 60

4.13.1 Introduction to Chiplet Architectures 60

vii

4.13.2 Security Threats in Chiplet-based Systems 61

4.13.3 Trusted Execution in Multi-Chip Modules 62

5 Chapter 5: Literature Review 64

5.1 Overview of Secure Computation Approaches 64

5.1.1 Secure MPC . 65

5.1.2 Garbled Circuits . 66

5.1.3 Oblivious Transfer . 67

5.2 Survey of Side-Channel and Fault Injection Attacks on Secure

Computation . 68

5.2.1 Side-Channel Attacks on Secure Computation 68

5.2.2 FIAs on Secure Computation 69

5.2.3 Impact of Side-Channel and FIAs on Secure Compu-

tation . 70

5.3 Masking and Hiding Techniques 71

5.3.1 Power Analysis and EM Hiding Countermeasures . . . 71

5.3.2 Instruction-Level Obfuscation 73

5.3.3 Limitations and Practical Challenges 73

5.4 Garbled Circuit and Secure/Private Function Evaluation . . . 74

5.4.1 Garbled Accelerators 75

5.5 Zero-Knowledge Proofs and Hybrid Secure Computation Ap-

proaches . 77

5.5.1 Zero-Knowledge Proofs for Secure Computation 77

viii

5.5.2 Hybrid Cryptographic Approaches 78

6 MPC for IP Protection 81

6.1 Motivation . 81

6.2 GarbledEDA: Privacy-Preserving Electronic Design Automation 82

6.2.1 Methodology . 82

6.2.2 Secure Computation for IP Protection 85

6.2.3 GarbledEDA Implementation Flow 87

6.2.4 Optimizing Performance and Hardware Utilization . . . 90

6.2.5 GarbledEDA Simulator Implementation Flow 91

6.2.6 Evaluation Setup . 94

6.2.7 Resource Utilization Evaluation 95

6.2.8 GarbledEDA with a Selector 98

6.2.9 GarbledEDA with an Improved Hardware Resource Ef-

ficiency Evaluation . 100

6.2.10 GarbledEDA Execution Time and Peak Memory Cost

Evaluation . 103

6.3 GuardianMPC: Backdoor-resilient Neural Network Computa-

tion . 106

6.3.1 Backdoor Attacks in DL Pipeline 107

6.3.2 Targets of Malicious Adversaries in Garbled Circuits . 108

6.3.3 Our Adversary Model 109

6.3.4 Similarities between Adversarial Models 109

ix

6.3.5 GuardianMPC Flow 110

6.3.6 Protection Against Malicious Adversaries 111

6.3.7 Efficient Execution with Hardware Acceleration 112

6.3.8 Experimental Setup . 114

6.4 Discussion . 124

7 Side-Channel Attacks Against Hardware Implementations 129

7.1 Motivation . 129

7.2 Bake It Till You Make It: Heat-induced power leakage from

masked NN . 130

7.2.1 Heat-Induced Power Leakage in Secure Computation . 130

7.2.2 Inducing Leakage through Internal Heat Generators . . 132

7.2.3 Experimental Results 135

7.2.4 Leakage Detection . 140

7.2.5 Key Guesses and Attack Success Rate 143

7.2.6 Implications for Secure Hardware Design 144

7.3 HWGN2: Side-channel Protected Neural Network through Se-

cure and Private Function Evaluation 146

7.3.1 Adversary Model . 146

7.3.2 Side-Channel Attack Scenario 148

7.3.3 HWGN2 Countermeasures Against SCA 148

7.3.4 Core Architecture of HWGN2 149

7.3.5 Side-Channel Resiliency Implementation and Evaluation151

x

7.3.6 TinyGarble-based Implementation of HWGN2 151

7.3.7 HWGN2 with Improved Hardware Resource Utilization

Efficiency . 153

7.3.8 Garbled MIPS Evaluator 153

7.3.9 Hardware Implementation Resource Utilization 154

7.3.10 Execution Time and Communication Cost Evaluation . 156

7.3.11 Side-Channel Evaluation 157

7.3.12 TVLA Test Evaluation of Power Side-Channel 158

7.3.13 TVLA Test Evaluation of EM Side-Channel 159

7.3.14 Architecture-Related Leakage Analysis 159

7.4 Garblet: MPC for Protecting Chiplet-based Systems 162

7.4.1 Adversary Model in Chiplet-Based Secure Computation 162

7.4.2 Methodology . 163

7.4.3 Oblivious Transfer Implementation 166

7.4.4 Evaluator Engine Implementation 167

7.4.5 Sub-circuit Assignment: Advantages and Process . . . 168

7.4.6 Chiplet-based GC Implementation Flow 169

7.4.7 Experimental Results 172

7.4.8 Acceleration Using Multiple Garbling/Evaluator Engines175

7.5 Timing Side-Channel Attacks on Secure Computation 177

7.5.1 Goblin and Its Building Blocks 181

7.5.2 Our Eviction Method: Junk Generator 181

7.5.3 Measuring Execution Time on CPUs 182

xi

7.5.4 Recovering Garbler’s Input 185

7.5.5 Performance Metric . 192

7.5.6 Experimental Results 192

7.5.7 Scalability of Goblin 195

7.5.8 Impact of the Number of Traces 196

7.6 Discussion . 201

8 Fault Injection Attacks Against Hardware Implementations204

8.1 Motivation . 204

8.2 FaultyGarble: Fault Attack on Secure MPC NN Inference . . . 206

8.2.1 Fault Injection Attacks: Techniques and Impact 206

8.2.2 Fault Injection and Active Attacks Against Secure Com-

putation . 207

8.2.3 Protection Against Fault Injection Attacks 208

8.2.4 Adversary Model . 210

8.2.5 Methodology . 211

8.2.6 Fault Injection in Garbled NN Inference Engines 216

8.2.7 Fault Injection in the Decoded Instruction of the NN

Model . 218

8.2.8 Experimental Setup . 220

8.2.9 Laser Fault Injection Setup 220

8.2.10 Results . 221

8.2.11 Complexity of the Attack: Number of Faults and Queries221

xii

8.2.12 Simulation Results . 223

8.3 Discussion . 228

9 Discussion and Future Work 232

9.0.1 Lessons Learned from Secure Hardware Implementations232

9.0.2 Future Directions in Secure and Private Implementa-

tion of MPC . 235

9.0.3 Overcoming Computational and Communication Over-

head . 235

9.0.4 Stronger Resilience Against Fault and Side-Channel

Attacks . 236

9.0.5 Scalability in Chiplet-Based Architectures 238

.1 A detailed report of leaky IF conditions 288

xiii

List of Tables

5.1 Comparison of Notable MPC Protocols 65

5.2 Key Optimizations in GC . 67

5.3 Optimizations in OT . 67

5.4 Summary of SCAs Against Secure Computation 69

5.5 Summary of FIAs on Secure Computation 70

5.6 Comparison of Masking and Hiding Techniques 73

5.7 Summary of garbled DL accelerators and their features. 77

5.8 Comparison of Zero-Knowledge and Hybrid Secure Computa-

tion Approaches. 80

6.1 GarbledEDA with maximum performance implementation cost

of different benchmarks in ARM(MIPS). 97

6.2 Comparison between implementation costs of GarbledEDA

(maximum performance) with a selector vs. GarbledEDA of

individual benchmarks. 99

6.3 Garbled EDA with an improved hardware resource efficiency

implementation cost of different benchmarks in ARM(MIPS). 101

xiv

6.4 Comparison between implementation costs of GarbledEDA

(maximum performance) vs. GarbledEDA (resource-efficient)

for small, moderate, and large benchmarks. 103

6.5 Comparison between the execution time of BM1 (the numbers

in boldface indicate the best results). 118

6.6 Comparison between the execution time of BM2 (the numbers

in boldface indicate the best results). 119

6.7 Comparison between the execution time of BM3 (the numbers

in boldface indicate the best results). 119

6.8 Comparison between the execution time of LeNET-5 [221] (the

numbers in boldface indicate the best results). 120

6.9 Garbled EDA vs. existing methods. 127

6.10 Comparative analysis of various secure ML approaches. 128

7.1 Hardware resource allocation in masked NN implementation,

evaluating BRAM-based heat generation. 136

7.2 Propagation delay variations in FPGA components under dif-

ferent temperatures. 139

7.3 Hardware resource utilization and OT cost comparison be-

tween approaches applied against BM1. 156

xv

7.4 Execution time and communication cost comparison between

HWGN2 and the state-of-the-art approaches for BM1. Results

for [364] and HWGN2 are based on an FPGA clock frequency

of 20MHz. (N/R: not reported). 156

7.5 Hardware resource utilization: comparison between Garblet

and implementations on monolithic FPGA [174, 156]. 172

7.6 Hardware resource utilization of Garblet individual modules. . 173

7.7 Execution time cost (in µs): comparison of common bench-

marks using baseline (not garbled), monolithic, and Garblet

implementation. 173

7.8 Execution time comparison (in µs) between monolithic and

Garblet implementation with one and three engines. 174

7.9 Execution time and peak memory cost of the circuit decom-

position algorithm. 174

7.10 The number of leaky IF conditions (IF) in various frameworks

(for a detailed report, refer to Appendix A). 180

7.11 Type of the gates in the input layer of the AES and 256-bit

MULT modules. 200

8.1 ALU function register value in MIPS I architecture 218

xvi

8.2 Comparison of query and fault complexity between our at-

tack, [222], and [62]. The number of faults applies only to

our attack. Unlike [222], which targets an HbC-secure infer-

ence engine, and [62], which attacks unprotected models, our

attack is mounted against a maliciously secure NN inference

engine. 222

1 A detailed report of leaky IF conditions (IF) of every function

call in JustGarble [34], TinyGarble [361] with half-gate and

free-XOR optimization, EMP-toolkit [246], Obliv-C [427], and

ABY [95]. 289

xvii

List of Figures

4.1 A generic garbling scheme G = (Gb,En,De,Ev, ev) cf. [35].

Our proposed secure and private DL accelerator is built upon

G. Note that capital letters on the arrows represent garbled

(protected) values/functions while lower case represent raw

(unprotected) ones. The blocks in orange show the operations

performed by the NN vendor, whereas the blues ones indicate

the evaluator operations. ev denotes the typical, unprotected

evaluation of the function f against the input x, e.g., simu-

lation of an IP using the PDK and the EDA to obtain the

output y. F , X, e and d are the counterparts of these in the

garbling scheme G that yields y after decoding Y 25

4.2 Garbled gates look-up table with no optimization. 28

4.3 Garbled gates look-up table with free-XOR optimization. . . . 29

4.4 Garbled gates look-up table with half-gate optimization. . . . 31

4.5 Intel core-i7 cache architecture [274]. 53

xviii

6.1 Proposed CAD/EDA compilation and simulation of IP under

various secure scenarios. The adversary at the design house

could be either HbC or malicious, attempting to tamper with

the IP-specific compiler or simulator to extract the IP. In a

secure compilation scenario, both the IP and PDK inputs re-

main protected, preventing unauthorized access to proprietary

technology. Similarly, during simulation, secure execution en-

sures that inputs remain private while restricting an untrusted

CAD vendor from gaining access to the simulation output. . . 84

6.2 General flow of generating GarbledEDA. The process starts

with parsing an IP description in Verilog or C format, which

is then converted to an appropriate instruction set for se-

cure evaluation. The garbler consists of two main compo-

nents: ARM2GC for ARM-based execution and GarbledCPU

for MIPS-based execution. The converted instructions are pro-

cessed through these frameworks to generate garbled MIPS or

ARM instructions that can be executed without exposing the

original IP. 89

xix

6.3 Flow of GarbledEDA simulator implementation. The figure il-

lustrates (a) the maximum performance implementation (blue),

which minimizes communication overhead and maximizes speed,

and (b) the improved hardware resource efficiency implemen-

tation (green), which prioritizes memory efficiency by evalu-

ating smaller sub-netlists sequentially. The first approach is

optimized for high-performance applications, while the second

is suited for hardware-constrained environments. 92

6.4 Well-known attack types against each stage of the DL pipeline

(Inspired by [113]). The red font means that the attacks fall

within the scope of this paper. The backdoor insertion dur-

ing different phases involves architectural backdoor insertion

in Model Selection, direct weight manipulation in Model Train,

architectural backdoor insertion and direct weight manipula-

tion in Model Deploy, and direct weight manipulation in Model

Update. 107

xx

6.5 A high-level flow of GuardianMPC. The processes highlighted

in red and yellow run on the garbler’s (NN provider’s) and

user’s machines, respectively. (a) In oblivious inference, gar-

bling the instructions and instruction sets is included in the

computation flow to ensure function privacy. (b) In private

training, the instructions and instruction sets are not garbled.

Instead, the garbler’s input (weights) are garbled and oblivi-

ously sent to the user via OT. 110

6.6 GuardianMPC protects NN against malicious modifications

during private training. The framework employs a cut-and-

choose mechanism to verify the consistency of GC, prevent-

ing an attacker from inserting backdoors through weight ma-

nipulation or incorrect circuit construction. The verification

process, based on random selection and cryptographic com-

mitments, ensures that any tampering is detected with high

probability. 112

6.7 In the oblivious inference scenario, GuardianMPC ensures the

privacy of pre-trained NN by encrypting the model architec-

ture and weights. The garbling of the NN prevents a malicious

provider from modifying the model, as the evaluator is unable

to decrypt the garbled inputs and tables, thereby preserving

the integrity of the model even in the presence of adversarial

behavior. 113

xxi

6.8 Comparison of accuracy over the first 15 iterations between

plaintext training, SecureML [267] at various bit precisions

(13, 6, and 2 bits), and GuardianMPC trained on MNIST [96]

dataset. 122

7.1 The adversary relies on the fact that at high temperatures,

the power consumption associated with different shares is no

longer independent of each other. In this regard, the adversary

takes advantage of the memory allocated to store the inputs

and, by writing alternating ‘0’ and ‘1’ patterns, attempts to

increase the operating temperature of the FPGA and detect

first-order leakage. 133

7.2 Experimental setup used to perform the thermal test. 137

7.3 Measured temperature for ModuloNET when processing a nor-

mal image versus when executing the internal BRAM-based

HG. The induced thermal increase demonstrates how internal

computation alone can raise the die temperature, impacting

masking security. 138

7.4 First-order leakage detection when the heat generator (HG) is

enabled, showing t-score values exceeding the threshold after

2M traces. 141

xxii

7.5 First-order DPA results on ModuloNET hidden layer with HG

enabled and PRNG on, showing correlation peaks for success-

ful key recovery. 142

7.6 Results for the second-order DPA for 500K traces against the

(a) hidden and (b) output layer of ModuloNET with HG on. . 143

7.7 First-order DPA against ModuloNET with HG on at (a) hid-

den for 1M traces and (b) output layer for 500K traces (gray

lines for wrong weight guesses and black line for correct weight

guess). 144

7.8 HWGN2 framework: The process begins with training the NN

as done for a typical DL task. The second step corresponds to

the implementation of the garbled NN hardware accelerator

along with running the OT protocol. The accelerator is deliv-

ered to the end-user, who attempts to collect the side-channel

traces with the aim of extracting information on NN hardware

acceleration (architecture, hyperparameters, etc.). 147

xxiii

7.9 The execution flow of HWGN2: (a) TinyGarble-based imple-

mentation [362] and (b) HWGN2 with improved hardware re-

source utilization efficiency. Key elements: L: garbled labels,

GT : garbled tables, e: encryption labels, d: decryption la-

bels, x: evaluator’s raw input, X: evaluator’s garbled input,

Y : garbled output, Yi, Xi, GTi, Li: corresponding elements

for the ith sub-netlist, and SCD: circuit description used for

mapping and evaluation. 152

7.10 Garbled MIPS evaluator architecture, based on modifications

to the Plasma MIPS core [315]. The modified instruction han-

dler processes garbled instructions while ensuring complete

privacy of the execution flow. 154

7.11 Example execution of a 2-bit adder using the garbled MIPS

evaluator. The process involves fetching, decoding, and exe-

cuting garbled instructions in a privacy-preserving manner. . . 154

7.12 TVLA test results for BM2 implementation on (a) an unpro-

tected MIPS core and (b) HWGN2 with one instruction per

OT interaction (computed for 10K traces). 158

7.13 TVLA test results for HWGN2 applied to (a) XNOR-based

BM2 with full instruction set per OT, (b) BM2 with full in-

struction set per OT, (c) XNOR-based BM2 with one instruc-

tion per OT, and (d) BM2 with one instruction per OT (cal-

culated for 2M power traces). 159

xxiv

7.14 TVLA test results for HWGN2 applied to (a) XNOR-based

BM2 with full instruction set per OT, (b) BM2 with full in-

struction set per OT, (c) XNOR-based BM2 with one instruc-

tion per OT, and (d) BM2 with one instruction per OT (cal-

culated for 2M EM traces). 160

7.15 A randomly chosen EM trace pattern captured from BM3 im-

plementation on (a) Atmel ATmega328P microcontroller [29],

(b) FPGA with unprotected MIPS evaluator [315], and (c)

HWGN2. Red lines indicate where the unprotected evaluator

starts processing the next layer. 161

7.16 The sub-circuits of a two-bit adder corresponding to each output.164

7.17 Sub-circuit assignment to garbling/evaluator engines. 170

7.18 The flow of GC implementation on the chiplet-based system. . 171

7.19 SR of Goblin for 1000 randomly chosen inputs applied to GC

generated by TinyGarble [362] with (a) free-XOR, (b) half-

gate optimizations, (c) JustGarble [187], and (d) Obliv-C [426].194

7.20 SR of Goblin against benchmark functions for a range of in-

put bits garbled by TinyGarble [361] with (a) only free-XOR

optimization, (b) half-gate protocol, (c) JustGarble [187], and

(d) Obliv-C [426] for 1000 randomly chosen inputs. 195

xxv

7.21 SR of Goblin against (a) 128-bit SUM, (b) 128-bit Hamming,

and (b) 128-bit MULT for a range of 10-100, 000 randomly cho-

sen inputs (first to last row: JustGarble [187], Obliv-C [426],

TinyGarble [361] with free-XOR, and with half-gate optimiza-

tions). 197

7.22 SR of Goblin for 1000 randomly chosen inputs given to GC

garbled by TinyGarble [362] when (a) only free-XOR or (b)

half-gate optimization is enabled and JG is disabled. 198

7.23 SR of Goblin against MULT, SUM, and Hamming benchmark

functions for a range of inputs garbled by TinyGarble [361]

when (a) only free-XOR optimization, (b) half-gate protocol

is enabled, and JG is disabled. 198

7.24 SR of Goblin against 128-bit (a) SUM, (b) Hamming, and (c)

MULT. CPU cycle traces captured from 10-100, 000 randomly

chosen inputs when JG is disabled. (Top: TinyGarble [361]

with only free-XOR, Bottom: with half-gate optimization). . . 199

7.25 SR of Goblin computed separately for AND and XOR input

gates of 128-AES, 256-bit MULT, 128-bit Hamming, 128-bit

SUM, and 288-bit SHA modules with (a) free-XOR and (b)

half-gate optimization. 200

xxvi

8.1 Overview of our attack scenario. The client has physical access

to the device at the edge running the garbled NN to perform

inference. The server represents the NN owner whose private

inputs are NN weights. 205

8.2 A high-level flow of an iterative GC-based NN inference. L0,1
G,k

and L0,1
E,k: garbler’s and client’s labels for kth layer (1 ≤ k ≤ ℓ).

x and X: client’s raw and garbled inputs received via OT; y:

client’s raw outputs; L: the intermediate layer garbled output. 213

8.3 A high-level representation of a general-purpose processor ar-

chitecture, adapted from [362], illustrating possible fault in-

jection points. Here, func refers to the function code (6 bits)

used in an R-Type register operation. 217

8.4 A high-level illustration of the control signals, ALU procedure,

and the location of our fault attack. 219

8.5 Iterative magnification of the device under the AlphaNOV

setup (from left to right): the Genesys2 board and the die

shown is the Kintex 7 FPGA with the heatsink removed; the

middle image depicts the die using the 20X lens to show the

corner where the FF for fault is placed; Lastly, the right-most

image is captured using the 50X lens, illustrating the fault in-

jection at the point of interest (the white dot corresponds to

the laser shot). 220

xxvii

8.6 Simulation of the alu func register during the execution of a

neuron in the first hidden layer (blue: execution window of

a neuron, purple: execution of multiplication and summation

per connected input, yellow: execution of the ReLU function). 223

8.7 Simulation of the alu func register during the execution of

a neuron in the last layer (blue: execution window of a neu-

ron, purple: execution of multiplication and summation per

connected input). 224

8.8 Simulation of the alu func register during the computation of

a neuron in the last layer after fault injection (blue: execution

window of a neuron, purple: altered data register due to fault

injection, orange: value of alu func after fault injection). . . . 225

8.9 Simulation of the alu func register during the computation

of a neuron in the first intermediate layer (blue: execution

window of a neuron; purple: modified data register due to

fault injection; orange: modified value of alu func after fault

injection). 226

xxviii

Chapter 1

Publications

The publishers’ versions of the following peer-reviewed publications are fully
included in this thesis:

1. M. Hashemi, S. Tajik, and F. Ganji, “Garblet: Multi-party Com-
putation for Protecting Chiplet-based Systems,” in IEEE VLSI Test
Symposium (VTS), 2025.

2. M. Hashemi, D. J. Forte, and F. Ganji, “GuardianMPC: Backdoor-
resilient Neural Network Computation,” IEEE Access, 2025.

3. M. Hashemi, D. Forte, and F. Ganji, “Time is money, friend! Tim-
ing side-channel attack against garbled circuit constructions,” in In-
ternational Conference on Applied Cryptography and Network Security
(ACNS), Cham: Springer Nature Switzerland, 2024, pp. 325–354.

4. M. Hashemi, D. Mehta, K. Mitard, S. Tajik, and F. Ganji, “Faulty-
Garble: Fault Attack on Secure Multiparty Neural Network Inference,”
Workshop on Fault Detection and Tolerance in Cryptography (FDTC),
Pages 53-64, 2024.

5. M. Hashemi, S. Roy, D. Forte, and F. Ganji, “HWGN 2: Side-
Channel Protected NNs Through Secure and Private Function Eval-
uation,” in International Conference on Security, Privacy, and Applied
Cryptography Engineering (SPACE), Cham: Springer Nature Switzer-
land, 2022, pp. 225–248.

1

6. M. Hashemi, S. Roy, F. Ganji, and D. Forte, “Garbled EDA: Pri-
vacy Preserving Electronic Design Automation,” in Proceedings of the
41st IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2022, pp. 1–9.

Along with the above items, the following additional peer-reviewed publi-
cation was authored by Mohammad Hashemi (”*” denotes that both authors
contributed equally to the corresponding work):

1. D. M. Mehta*, M. Hashemi*, D. S. Koblah, D. Forte, and F. Ganji,
“Bake it till you make it: Heat-induced power leakage from masked
neural networks,” IACR Transactions on Cryptographic Hardware and
Embedded Systems (TCHES), vol. 2024, no. 4, pp. 569–609.

2

Chapter 2

Contribution

The presented dissertation is based on multiple published co- authored works.
In the following, I list my own contributions according to the Doctoral Reg-
ulations. I had experimental, editorial, and content responsibilities in these
publications. The list was approved by all co-authors.

2.0.1 Publication 1

M. Hashemi, D. J. Forte, and F. Ganji, “GuardianMPC: Backdoor-Resilient
Neural Network Computation,” IEEE Access, 2025.

My contributions are as follows:

• I implemented the entire GuardianMPC framework, including private
training and oblivious inference.

• I conducted the full experimental evaluation, including the implemen-
tation and performance analysis of private training and oblivious infer-
ence.

• I drafted Sections 2-8, which include the methodology, implementation
details, results, and discussion sections.

2.0.2 Publication 2

M. Hashemi, D. Forte, and F. Ganji, “Time is Money, Friend! Timing Side-
Channel Attack Against Garbled Circuit Constructions,” in International

3

Conference on Applied Cryptography and Network Security (ACNS), Cham:
Springer Nature Switzerland, 2024, pp. 325–354.

My contributions are as follows:

• I implemented the Goblin attack including the clustering approach,
ensuring its effectiveness against various garbled circuit frameworks.

• I identified and analyzed the leaky IF conditions within garbled circuit
implementations.

• I evaluated the success rate (SR) of the attack and analyzed its scala-
bility across different benchmark functions.

• I drafted Sections 2-7, which include the methodology, implementation
details, and experimental evaluation.

2.0.3 Publication 3

M. Hashemi, D. Mehta, K. Mitard, S. Tajik, and F. Ganji, “FaultyGarble:
Fault Attack on Secure Multiparty Neural Network Inference,” Workshop on
Fault Detection and Tolerance in Cryptography (FDTC), Pages 53-64, 2024.

My contributions are as follows:

• I implemented the MIPS architecture on the FPGA to serve as the
computation platform for secure neural network inference.

• I conducted the fault injection experiments in simulation, ensuring the
effectiveness of the attack under controlled conditions.

• I collaborated with Kyle Mitard and Dev Mehta, where Kyle developed
the AlphaNOV laser fault injection setup, and Dev launched the laser
fault injection experiments.

• I drafted Sections 2-7, which include the methodology, implementation
details, and experimental evaluation. Section V.C was written by Dev
Mehta.

4

2.0.4 Publication 4

M. Hashemi, S. Roy, D. Forte, and F. Ganji, “HWGN2: Side-channel Pro-
tected Neural Networks through Secure and Private Function Evaluation,”
in International Conference on Security, Privacy, and Applied Cryptogra-
phy Engineering (SPACE), Cham: Springer Nature Switzerland, 2022, pp.
225–248.

My contributions are as follows:

• I implemented the HWGN2 framework, including the secure and pri-
vate function evaluation approach for side-channel protection.

• I conducted the hardware implementation and optimization of the MIPS-
based secure neural network accelerator.

• I performed the side-channel leakage evaluation and validation experi-
ments for HWGN2.

• I drafted Sections 2-7, which include the methodology, implementation,
experimental evaluation, and discussion sections. Steffi Roy assisted
with writing the background section of the paper.

2.0.5 Publication 5

M. Hashemi, S. Roy, F. Ganji, and D. Forte, “Garbled EDA: Privacy Pre-
serving Electronic Design Automation,” in Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2022, pp. 1–
9.

My contributions are as follows:

• I implemented the Garbled EDA framework, including its secure func-
tion evaluation (SFE) and private function evaluation (PFE) approaches.

• I conducted the full experimental evaluation and optimization of Gar-
bled EDA, including the MIPS- and ARM-based secure electronic de-
sign automation implementations.

• I performed the security analysis and validation of the framework against
potential adversaries.

5

• I drafted Sections 3-5, which include the methodology, implementation,
evaluation, and discussion sections. Steffi Roy assisted with writing the
background section of the paper.

2.0.6 Publication 6

M. Hashemi, S. Tajik, and F. Ganji, “Garblet: Multi-party Computa-
tion for Protecting Chiplet-based Systems,” in IEEE VLSI Test Symposium
(VTS), 2025.

My contributions are as follows:

• I implemented the hardware and software components of the Garblet
framework, integrating customized Oblivious Transfer (OT) modules
and an optimized evaluator engine for chiplet-based secure computa-
tion.

• I designed and implemented the circuit decomposition technique, which
enables efficient parallel execution across multiple chiplets.

• I conducted the full experimental evaluation, including performance
analysis on an AMD/Xilinx UltraScale+ multi-chip module.

• I drafted Sections 2-5, which include methodology, implementation,
experimental results, and discussion.

2.0.7 Publication 7

D. M. Mehta*, M. Hashemi*, D. S. Koblah, D. Forte, and F. Ganji, “Bake
It Till You Make It: Heat-Induced Power Leakage from Masked Neural Net-
works,” IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems (TCHES), vol. 2024, no. 4, pp. 569–609.

My contributions are as follows:

• I actively engaged in discussions regarding this project with all co-
authors, including Dev M. Mehta, David S. Koblah, Domenic Forte,
and Fatemeh Ganji.

• I investigated the timing difference effects caused by temperature vari-
ations and their impact on side-channel leakage.

6

• I implemented the differential power analysis (DPA) algorithm in Python
to analyze the power leakage in masked neural networks.

• I launched the DPA attacks based on power traces provided by Dev
Mehta, ensuring accurate analysis and validation of the attacks.

• I contributed to writing the manuscript, specifically sections related to
DPA results and the timing difference effects of temperature on FPGA-
based accelerators (Sections 4, 6.3-6.7).

7

Chapter 3

Introduction

3.1 Motivation

The growing use of digital data and computing has raised serious concerns
about privacy, security, and data integrity. As technologies like cloud com-
puting, machine learning as a service (MLaaS), and shared data processing
become more common, it is increasingly important to use secure computa-
tion methods that protect data privacy while keeping results accurate [129,
418, 120]. In today’s world—where data breaches, cyber spying, and attacks
on machine learning systems are more frequent—there is a strong need for
computation models that can work on encrypted or hidden data without
revealing sensitive information [267, 319].

Traditional cryptographic methods like symmetric and asymmetric en-
cryption offer strong protection for keeping data private during storage and
transfer [97]. However, these techniques do not automatically secure data
while it is being processed. In many practical situations, computations are
carried out on private or sensitive data—such as medical records, financial
data, biometric information, or proprietary machine learning (ML) models.
If attackers are able to access intermediate results during computation, they
may uncover confidential information, which can lead to privacy breaches,
financial harm, or theft of intellectual property (IP) [153, 303, 42, 285, 26,
20, 344].

Secure computation approaches like secure multiparty computation (MPC)
and homomorphic encryption (HE) help close this gap by allowing computa-
tions on encrypted data without revealing the actual values [136, 227]. These

8

techniques let multiple parties work together to compute a function while
keeping their own inputs private, which is important for use cases such as
privacy-focused medical research, confidential federated learning, and secure
voting systems [82]. Although these methods are strong in theory, they often
struggle with real-world challenges like high computation time, communica-
tion overhead, and the need to defend against attackers who take advantage
of software or hardware weaknesses [319, 267, 217, 290, 68, 404, 44].

One of the main motivations behind secure computation research is the
growing understanding that cryptographic security alone is not enough to
defend against physical threats. Even if an encryption method is mathe-
matically secure, attackers can still gather information, interfere with com-
putations, or cause errors using techniques like side-channel attacks, fault
injection, or hardware backdoors [117, 28, 357, 210, 236, 59]. These risks are
especially important in situations where computations are done on hardware
that may not be trusted, such as in cloud services, outsourced ML inference,
or embedded edge devices [158].

In recent years, secure deep learning (DL) inference has become a major
focus in secure computation research, especially as AI models are increasingly
used in privacy-sensitive settings. Many DL models used for tasks such
as biometric authentication, fraud detection, and national security need to
remain confidential from both the users and the service providers [319]. To
address this, secure inference frameworks using garbled circuits (GC) [35]
and homomorphic encryption (HE) [76] have been developed. These systems
let clients query models without revealing their inputs, and also keep the
model itself hidden, helping to prevent model inversion attacks or adversarial
tampering [267, 154].

However, even advanced secure inference methods can still be vulnerable
to physical attacks. For example, the FaultyGarble [155] attack showed that
an attacker can use laser fault injection to break the security of GC-based se-
cure inference and recover proprietary neural network (NN) parameters [155].
This case illustrates the practical limits of relying only on cryptographic pro-
tections and emphasizes the urgent need for comprehensive security strategies
that combine mathematical techniques, physical robustness, and hardware-
level defenses [28, 254].

Given the growing range of threats, secure computation needs to go
beyond traditional cryptographic methods and include protections against
physical tampering, side-channel attacks, and violations of computational
integrity [227, 254]. The following sections examine the widening threat

9

landscape in secure computation, the importance of MPC as a secure com-
putation model, and the difficulties of building truly robust systems that can
withstand advanced attackers.

3.2 The Expanding Threat Landscape in Se-

cure Computation

As more computation moves to distributed and untrusted environments, the
types of security threats have changed significantly. Secure computation
methods, which originally focused on keeping data private during processing,
now have to deal with a wider range of attacks that target both software flaws
and hardware vulnerabilities [129, 227]. With the growth of cloud computing,
edge AI, and collaborative multi-party systems, new attack surfaces have
emerged that traditional cryptographic techniques were not built to handle.

While early cryptographic models assumed that attackers could only ac-
cess data during transmission or storage, modern adversaries go further by
directly interfering with the computation process. They take advantage of
algorithmic flaws, software bugs, and hardware-level attacks [117, 210]. This
shift in attacker capabilities has made traditional security measures insuffi-
cient, leading to the need for advanced cryptographic solutions like secure
MPC, fully homomorphic encryption (FHE), and trusted execution environ-
ments (TEE) [81] to protect both the privacy and correctness of computa-
tions, even in hostile settings [120, 267, 68, 81].

The Rise of Cloud and Outsourced Computation

One major reason for the expanding threat landscape in secure computation
is the increasing use of cloud based processing. Many organizations out-
source their computing tasks to third party cloud providers because it is cost
effective and scalable, but this also introduces serious security and privacy
risks [196]. Sensitive information, like financial data, medical records, and
proprietary ML models, is often processed on hardware that may not be
trusted, making it vulnerable to data breaches, insider attacks, and unau-
thorized monitoring [319].

For instance, MLaaS providers offer inference capabilities where users
send their private data to a pre trained model hosted on the cloud [389].
While this approach enhances accessibility, it also introduces risks of model

10

inversion attacks, where adversaries reconstruct input data from observed
outputs, and membership inference attacks, where attackers determine whether
a particular data point was used in training [352]. Secure inference protocols
based on GC and HE have been proposed to mitigate these risks, but their
practicality is still challenged by computational overhead and vulnerability
to side channel analysis [267, 319].

Side-Channel and Microarchitectural Attacks

Modern computation does not only face software based vulnerabilities, adver-
saries increasingly exploit side channel leaks to extract sensitive information
from secure systems. These attacks rely on unintended information leakage,
such as power consumption, electromagnetic (EM) emissions, timing differ-
ences, and cache access patterns, to uncover cryptographic keys or secret
data [117, 210].

A well known example of such threats is cache based side channel attacks
(SCA), which take advantage of shared memory in modern processors to leak
confidential information. Attacks like Flush+Reload [421] and Spectre [207],
Meltdown [236] use speculative execution and cache timing differences to ex-
tract sensitive data from protected memory [236, 59]. These vulnerabilities
have shown that even hardware based security boundaries, such as isolation
between processes or virtual machines, can be bypassed using microarchitec-
tural side channels.

Another example is the Goblin attack [153], which revealed how timing
side channels could be exploited in secure computation frameworks such as
JustGarble [187] and Obliv-C [427]. By analyzing how long certain operations
take to run, adversaries were able to recover secret inputs processed using
GC, breaking the privacy protection promised by secure computation. These
findings show the need for side channel resilient cryptographic methods that
do not leak information during execution.

Fault Injection and Physical Tampering Attacks

Beyond passive side channel threats, attackers can actively disrupt computa-
tion by injecting faults into hardware and software to uncover secrets or cause
incorrect results. Fault injection attacks, including laser based, EM, and
voltage glitching methods, have been widely explored as ways to break cryp-
tographic systems [28, 357]. These attacks are especially dangerous because

11

they do not need direct access to secret keys, instead they cause computation
errors that reveal key dependent differences in processed data.

For example, the FaultyGarble [155] attack showed how laser induced
faults could be used to extract proprietary DL models from secure inference
systems based on GC. By carefully injecting faults during computation, at-
tackers could bypass the privacy protections of MPC protocols and recover
NN parameters with high accuracy.

In a similar way, recent work on heat related power leakage has shown
that even masked cryptographic systems, which are meant to stop power
analysis attacks, can be vulnerable when exposed to controlled temperature
changes [254]. These results suggest that traditional defenses like masking
and blinding may not be enough in situations where attackers have physical
access to the computing device.

Security Challenges in Emerging Hardware Architectures

The development of hardware architectures has made the secure computation
landscape more complex. With the growing use of heterogeneous computing,
chiplet based systems, and specialized AI accelerators, securing computation
now involves addressing new hardware related attack surfaces. Unlike tradi-
tional single chip processors, chiplet based designs combine components from
different vendors, which brings potential risks such as supply chain attacks,
hardware backdoors, and untrusted chiplet behavior [303].

For instance, Garblet [158], a secure MPC framework built for chiplet
based systems, showed that even when using cryptographic protocols like
GC, communication overhead and trust issues in multi chiplet setups need
careful attention. This highlights the importance of hardware assisted secure
computation approaches that can reduce the risks from third party compo-
nents that may not be trusted.

The Need for Multilayered Secure Computation Strategies

Given the rapidly growing range of threats, secure computation must move
beyond traditional cryptographic solutions and adopt layered security strate-
gies. This includes cryptographic hardening, which focuses on making MPC
and HE based protocols more resistant to side channel and fault injection
attacks [227, 267]. It also involves hardware supported security, using TEE,
physically unclonable functions (PUF), and hardware root of trust systems

12

to strengthen cryptographic protections [59, 254]. Another key method is
secure system design, which focuses on building fault tolerant, tamper resis-
tant computation frameworks that can detect and respond to attacks on the
computation process [154].

The next section discusses MPC as a secure computation model, outlin-
ing its theoretical background and practical use in addressing the security
challenges introduced by today’s advanced attack techniques.

3.3 MPC as a Secure Computation Model

Secure MPC is a cryptographic framework that lets multiple parties com-
pute a shared function over their private inputs without revealing individual
data [418, 129, 227, 37, 82]. Unlike standard encryption methods that pro-
tect data while stored or sent, MPC keeps data private during the whole
computation, making sure participants only learn the final result. This is es-
pecially useful when different organizations want to work together on private
data without giving up privacy. Examples include financial institutions do-
ing joint risk analysis [47, 282], hospitals working together on research while
keeping patient records private [393, 197], and governments performing sta-
tistical analysis on sensitive data sets [48].

MPC began with Yao’s GC, introduced in the 1980s, which showed how
two parties could compute a function together while keeping their inputs
hidden [418]. This idea, called Secure Function Evaluation (SFE), allowed
private computation of Boolean circuits [35, 429]. Over time, research ex-
tended beyond two party settings to more general multi party cases, resulting
in protocols based on secret sharing (SS) [37, 87] and HE [120]. While SFE
protects fixed functions, it does not naturally support situations where the
function itself must stay secret. This led to work on Private Function Evalua-
tion (PFE), where both the inputs and the function remain private [200, 265].
PFE is important for applications like secure IP verification, where revealing
the function could expose proprietary algorithms [156].

As computation moved from isolated systems to distributed and cloud
based platforms, the need for secure computation became more urgent [196,
259]. Many modern tasks involve data held by multiple parties that do not
fully trust each other [319, 267]. For example, cloud based ML services
process large amounts of personal data that must stay private [352, 389]. In
federated learning, different groups train models together without sharing

13

their data [48]. Traditional cryptography protects stored and transmitted
data, but not the intermediate results during computation. This has made
MPC a widely used tool for privacy preserving computation [267, 319].

One of the biggest challenges in MPC is efficiency [202, 87]. Early proto-
cols were mostly theoretical and too slow or complex for practical use. How-
ever, improvements in circuit based computation, such as better garbling
methods [429, 35] and HE [120], have helped reduce these costs. Secret shar-
ing approaches, which divide data into parts shared among participants, offer
another way to enable secure computation with lower overhead [37, 87, 82].
These techniques are used in many modern MPC frameworks that aim to
balance security and performance [202, 265].

With its growing adoption, MPC has been applied in many fields [47, 282].
Privacy preserving ML is one of the most promising areas, using GC and HE
to train and run models on encrypted data [267, 319, 163, 194, 260]. Fi-
nancial services use MPC for secure auctions and fraud detection, protecting
sensitive financial data [47, 282]. Electronic voting systems rely on MPC
to count votes without revealing individual choices [79, 83]. Secure Elec-
tronic Design Automation (EDA) uses MPC to protect intellectual property
during joint chip design projects [157]. Genomic research also benefits from
MPC, enabling private analysis of genetic data without risking personal pri-
vacy [393, 197].

Despite this progress, challenges still remain [319, 267, 202]. MPC pro-
tocols still require more computation than regular methods. Large scale
use needs smart optimizations to reduce communication and support scal-
ability [202]. Real world systems must also protect against side channel
threats, where attackers might gather information through timing or power
use [117, 254]. While MPC gives strong cryptographic protection, it is often
used with trusted hardware like Intel SGX to boost performance [81, 59].
However, this creates new trust issues, since weaknesses in TEE could put
security at risk [59, 344].

The rise of MPC marks a big shift in secure computation, making privacy
preserving collaboration possible across many applications. As cryptographic
tools continue to improve, future work will aim to boost efficiency, support
larger systems, and guard against new types of threats. The next section
looks at the challenges of building secure computation systems in adversarial
settings, with a focus on side channel and fault injection attacks that put the
integrity of private computation at risk.

14

3.3.1 Challenges in Secure Implementations: Side-Channel
and Fault Attacks

Secure computation, in its theoretical form, provides strong mathematical
guarantees to protect confidentiality and correctness. However, real world
implementations of these cryptographic protocols face a very different set
of challenges, ones that come not from flaws in cryptography, but from the
physical and architectural characteristics of computing systems. Adversaries
today do not always break cryptographic schemes in the usual way, instead,
they take advantage of how computations are carried out. Two of the most
serious threats to secure computation are SCA and fault injection attacks,
which can weaken even the strongest cryptographic protocols by using unin-
tended leaks and physical changes [210, 117, 236, 344].

These attacks have serious consequences. They have been used to steal
secret cryptographic keys, uncover private inputs, and even break security
protections in TEE. For example, attacks on Intel SGX and ARM TrustZone
have shown that secure enclaves can be compromised using microarchitec-
tural side channels [59, 344, 81]. Similarly, fault injection attacks have been
used to break cryptographic systems, such as the well known Bellcore at-
tack, where attackers recovered RSA private keys by causing errors during
computation [49]. As secure computation is used more often in areas like
privacy preserving ML, cloud based secure inference, and private financial
transactions, dealing with these risks becomes critical.

Side-Channel Attacks: Exploiting Unintended Leaks

Cryptographic protocols assume that adversaries only have access to a sys-
tem’s input and output, but real world implementations leak information in
subtle, yet exploitable ways. SCA focus on these unintended leaks, allowing
adversaries to recover secret data by observing physical effects such as power
use, EM emissions, execution timing, or memory access patterns [210, 111,
117, 422]. One of the earliest and most well known SCA is Differential Power
Analysis (DPA), introduced by Kocher et al., which showed that by mea-
suring small changes in power use during encryption, attackers could recover
cryptographic keys [210]. This method was later extended to target many
cryptographic systems, including smartcards, embedded devices, and hard-
ware security modules (HSMs) [247, 321]. More recently, microarchitectural
attacks such as Flush, Reload, Spectre, and Meltdown have shown that even

15

CPU improvements like speculative execution and branch prediction can leak
sensitive data, breaking the separation between processes [208, 236, 422, 59].

In secure MPC and HE, side channel risks present new challenges. Since
these methods involve heavy computation, they often depend on hardware
accelerators and optimized code. Unfortunately, these optimizations often
cause timing differences or memory access patterns that can be exploited.
Researchers have shown cache attacks that extract private model parameters
from ML models running in cloud systems [319, 389, 239]. In a similar
way, side channel analysis has been used to recover cryptographic keys from
FHE schemes, raising concerns about using HE based secure inference in real
applications [239, 260].

The risk from SCA is not just theoretical, it has been shown in real world
cryptographic systems. For example, researchers have recovered AES encryp-
tion keys from cloud based virtual machines using cache attacks [435, 422].
EM SCA have also been used to extract RSA keys from cryptographic de-
vices that are physically protected [111, 94]. These attacks show the need for
strong countermeasures, including constant time code, randomized memory
access, and hardware designed to resist side channel attacks [247, 81].

Fault Injection Attacks: Manipulating Computation

While SCA passively extract information, fault injection attacks actively
interfere with computation to cause errors that can be exploited. These
attacks use techniques such as laser fault injection, voltage glitching, and
EM disturbance to produce incorrect results, which can then be studied to
uncover secrets or bypass security protections [356, 28, 94, 321]. One of the
most well known examples is the Bellcore attack on RSA cryptography. By
adding faults during modular exponentiation, attackers were able to extract
private keys by analyzing the wrong outputs [49]. This attack showed that
cryptographic systems must not only be mathematically correct, but also
resistant to faults introduced on purpose [357, 28].

Modern fault attacks have become more advanced. Laser based fault in-
jection has been used to steal cryptographic keys from smartcards, get around
secure boot protections, and even break secure enclave systems like Intel
SGX [59, 81, 252]. Similarly, clock glitches and EM interference have been
used to bypass PIN checks in embedded devices and payment systems [94, 28].
A particularly concerning example of fault related vulnerabilities is Faulty-
Garble [155], an attack on GC based secure inference. Researchers showed

16

that by adding hardware faults, they could make GC leak information, al-
lowing them to recover the structure and parameters of DL models running
on a system that was thought to be secure [153, 254, 170, 386, 420].

Towards Secure and Resilient Implementations

Addressing these vulnerabilities requires a multi layered defense strategy.
One effective countermeasure involves masking and blinding techniques, which
randomize power use, timing, and memory access patterns to reduce side
channel leakage [247, 117]. Oblivious RAM (ORAM) techniques offer an-
other layer of security by making memory access patterns indistinguishable,
which helps stop cache based SCA [131, 202]. Also, using secure hardware en-
claves like Intel SGX and ARM TrustZone provides isolated environments for
execution, though they are still open to microarchitectural attacks and need
extra protection to guard against speculative execution issues [59, 81, 16].

Fault tolerant cryptographic systems use repeated computations, error
detection, and self repairing circuits to defend against fault injection at-
tacks [28, 357, 254]. For example, modern secure boot systems use in-
tegrity checks that can spot and block changes caused by voltage glitching
attacks [252]. Likewise, techniques such as dual rail logic and duplicated ex-
ecution paths help reduce the impact of both side channel and fault injection
attacks [247, 28].

As attackers continue to improve their methods, protecting against side
channel and fault injection attacks will require ongoing progress in hardware
security, cryptographic system design, and secure engineering practices. The
next section explores research contributions that build on these challenges,
offering new ways to improve secure computation in real systems.

3.4 Research Contributions and Scope

3.4.1 Summarizing the Key Gaps in Prior Work

The field of secure MPC and hardware based security has developed signif-
icantly over the past few decades, yet major challenges remain in building
practical, scalable, and resilient systems. Traditional cryptographic meth-
ods, such as FHE and general GC, though strong in theory, often face com-
putation and communication inefficiencies that limit their use in real world
settings. In addition, side channel and fault injection attacks have exposed

17

serious weaknesses in current secure inference systems, showing the need for
stronger protections supported by hardware. Also, as chiplet based architec-
tures become more common in high performance computing, new challenges
appear in securing distributed computations across different, and possibly
untrusted, hardware components.

Even with many advances, past research has had trouble fully solving
these problems. Many current MPC implementations are still not practical
because of high overhead, poor scalability, and vulnerability to physical at-
tacks. By carefully reviewing earlier work, we point out several key gaps
that have driven our research across different parts of secure computation,
including secure EDA, faster MPC systems, and hardware security for NN
inference.

Inefficiencies in Secure Computation Protocols

One of the main limitations of traditional secure computation protocols is
their high computational and communication overhead. While GC provide
a base for two party SFE, the performance slowdowns caused by garbling
and evaluating large circuits have limited their broader use [227]. Some
improvements, such as free XOR and half gates, have lowered parts of this
overhead, but they still do not fully solve the scalability issues in complex
secure computations [429, 35]. Fully FHE offers another approach by allowing
computations on encrypted data without decryption, but its slow speed and
high delay make it a poor fit for real time use [119].

Our work on GarbledEDA tackles these problems by creating a privacy
preserving EDA framework that greatly reduces the computation needed for
secure circuit verification [157]. By using circuit specific improvements, we
show that secure design verification can be done with practical overhead,
making it possible to protect IP in shared chip design projects.

Vulnerabilities to Side-Channel and Fault Injection Attacks

Another important limitation in earlier work is the weakness of secure compu-
tation systems against side channel and fault injection attacks. Many secure
inference protocols are designed with only a cryptographic adversary in mind,
and they do not consider real world attack methods such as power analysis,
EM leakage, and laser based faults [117, 28]. These attacks give adversaries
the ability to extract secret model parameters, change computations, and

18

bypass cryptographic protections with surprising ease.
Our work on FaultyGarble [155] reveals these weaknesses in secure DL

inference by showing how laser fault injection can be used to recover pri-
vate model weights from GC. This research shows the urgent need for MPC
frameworks that can resist faults, and it drives our follow up efforts to build
hardware based protections for secure computation.

Communication Overhead in Secure MPC Implementations

Beyond computational inefficiencies, communication overhead is also a major
challenge in secure computation. Most existing MPC frameworks depend
on frequent message exchanges between the parties involved, which greatly
increases both latency and bandwidth usage. This problem is especially
noticeable in privacy preserving ML, where large NN models make secure
inference even more costly [267, 319].

To reduce these overheads, GuardianMPC [154] presents an improved
secure computation framework that uses custom hardware parts to speed up
oblivious transfer (OT) and lower communication costs in secure inference.
Our framework shows clear improvements in evaluation speed compared to
regular MPC setups, making privacy preserving NN inference more practical
for real world use.

Security Risks in Emerging Chiplet-Based Architectures

As chiplet-based architectures gain traction in high-performance comput-
ing, securing distributed computations across untrusted chiplets becomes a
growing concern. Traditional security models assume a monolithic, trusted
processor, but in modern multi-chip systems, untrusted chiplets or inter-
posers can act maliciously, intercepting communication or injecting faults
into secure computations [303].

Our work on Garblet [158] pioneers the application of MPC techniques to
protect computations in chiplet-based systems. By distributing GC across
multiple chiplets and leveraging hardware-based OT modules, we demon-
strate a significant reduction in communication overhead while maintaining
security guarantees even in adversarial hardware environments. This ap-
proach sets a precedent for securing next-generation heterogeneous comput-
ing platforms.

19

HWGN2 and the Limitations of Existing Secure Inference Frame-
works

NN hardware accelerators are highly susceptible to SCA, leading to IP theft.
Several existing solutions have attempted to mitigate these threats, includ-
ing masked inference engines such as MaskedNet [103], ModuloNet, and
BoMaNet [101]. MaskedNet introduced hardware-level masking techniques
to counter differential power analysis (DPA) attacks, incorporating masked
adder trees and masked activation functions [103]. Building on this, Mod-
uloNet [102] leveraged modular arithmetic for efficient hardware masking,
reducing overhead while maintaining security [101]. BoMaNet further ad-
vanced this field by implementing Boolean masking across entire NNs, ad-
dressing both linear and non-linear operations to enhance resistance against
SCA [102].

HWGN2 [156] adopts a fundamentally different approach by utilizing GC
and SFE to achieve side-channel resistance. Unlike MaskedNet, ModuloNet,
and BoMaNet, which focus on masking techniques at the hardware level,
HWGN2 inherently ensures both input privacy and model confidentiality. By
implementing GC using a microprocessor without interlocked pipeline stages
(MIPS)-based architecture, HWGN2 significantly reduces logical and memory
utilization while maintaining strong security guarantees against side-channel
and fault injection attacks. However, this comes at the cost of increased
communication overhead. Our work demonstrates that HWGN2 not only
improves resistance to real-world adversarial threats but also expands the
scope of privacy-preserving inference to scenarios where traditional masking-
based methods may fall short.

Bridging the Gap Between Theory and Practice in Secure Compu-
tation

Many cryptographic protocols for secure computation remain confined to
theoretical models, lacking real-world implementations that balance security
with efficiency. While the field has seen numerous breakthroughs in prov-
able security, translating these techniques into practical, scalable solutions
remains an ongoing challenge [202, 37].

Our collective body of work, including Goblin [153] and Bake It Till You
Make It [254], bridges this gap by evaluating the real-world performance
trade-offs of secure computation techniques. Through rigorous benchmark-

20

ing and hardware-assisted optimizations, we provide valuable insights into
the feasibility of deploying MPC-based solutions in resource-constrained en-
vironments.

The limitations of prior work, including inefficiencies in secure compu-
tation, vulnerability to side-channel and fault injection attacks, high com-
munication overhead, and security challenges in chiplet-based architectures,
underscore the need for more robust and practical solutions. Our research
systematically addresses these gaps by introducing novel frameworks, op-
timizations, and hardware-assisted techniques to enhance the security, effi-
ciency, and scalability of secure computation.

3.5 Dissertation Organization

The organization of the dissertation is as follows. Chapter 4 provides an
overview of the fundamental concepts required to understand the disserta-
tion’s contributions. It introduces SFE and PFE, explaining their theoretical
foundations and practical applications. The chapter then delves into Yao’s
GC, including mathematical definitions, the garbling process, and various
optimizations such as Free-XOR [213], Half-Gates [428], and Row Reduc-
tion [428]. Additionally, it covers OT (OT) and adversary models in se-
cure computation, highlighting passive, honest-but-curious, and active ad-
versaries. The chapter concludes with a discussion of side-channel and fault
injection attacks, including their impact on cryptographic implementations,
as well as a brief introduction to chiplet-based architectures and their security
implications.

Chapter 5 presents a survey of secure computation techniques, with a fo-
cus on GC, OT, and their role in MPC. It includes an in-depth examination of
side-channel and fault injection attacks targeting secure computation models
and existing countermeasures. Additionally, this chapter reviews hardware
security techniques such as instruction-level obfuscation and power/EM hid-
ing. The discussion extends to the limitations of existing approaches, moti-
vating the need for novel contributions.

Chapter 6 introduces GarbledEDA [157] and GuardianMPC [154], two
novel frameworks designed to enhance the security of EDA and DL mod-
els. GarbledEDA provides a privacy-preserving approach to secure hardware
design, ensuring that IP remains confidential throughout the design and ver-
ification process. GuardianMPC extends these principles to DL, introducing

21

techniques for secure and backdoor-resilient NN computation. The method-
ologies, implementation details, and experimental results for both frame-
works are discussed in detail.

Chapter 7 explores vulnerabilities in secure computation arising from side-
channel analysis. The chapter presents the Bake-It attack [254], which lever-
ages heat-induced power leakage in masked NNs, demonstrating a novel class
of temperature-based attacks. Additionally, HWGN2 [156] is introduced as a
side-channel-protected NN framework, utilizing secure and PFE to mitigate
power and EM leakage. The experimental evaluation highlights the strengths
and weaknesses of various countermeasures against such attacks.

Chapter8 focuses on active adversarial techniques, specifically fault injec-
tion attacks. The FaultyGarble [155] framework is introduced, demonstrating
how laser fault injection can compromise secure multiparty NN inference.
The chapter details various fault injection methodologies, their impact on
garbled circuit-based computations, and possible countermeasures to miti-
gate such threats. Experimental results illustrate the effectiveness of these
attacks and provide insight into potential improvements in secure hardware
design.

Chapter 9 summarizes the key contributions of this dissertation, empha-
sizing the advancements made in secure computation, hardware security, and
side-channel/fault attack resilience. The chapter discusses open challenges
and future research directions, including enhancements to secure inference,
optimizations for GC, and new methodologies for defending against emerging
hardware-based threats.

3.6 Discussion

Advancing the security and efficiency of secure MPC necessitates integrat-
ing robust countermeasures into next-generation frameworks. This integra-
tion addresses emerging threats and enhances the practical deployment of
MPC protocols. Key strategies include incorporating hardware-based TEE,
optimizing cryptographic protocols, and implementing comprehensive side-
channel attack mitigations.

22

Leveraging Trusted Execution Environments

TEEs, such as Intel’s Software Guard Extensions (SGX) [81], provide iso-
lated environments that protect data during processing, ensuring confiden-
tiality and integrity. By executing sensitive computations within TEEs, MPC
frameworks can significantly reduce the attack surface exposed to potential
adversaries. This hardware-based isolation complements traditional crypto-
graphic protections, offering a multifaceted defense strategy. However, it’s
essential to acknowledge that TEEs are not impervious to all attacks; vul-
nerabilities such as side-channel exploits have been identified, necessitating
ongoing research and enhancement [81].

Optimizing Cryptographic Protocols

Enhancing the efficiency of cryptographic operations is crucial for the scala-
bility of MPC systems. Techniques like GC and OT have been foundational
but often entail substantial computational and communication overhead. Re-
cent advancements aim to streamline these protocols, reducing latency and
resource consumption without compromising security. For instance, imple-
menting parallel processing and leveraging hardware accelerators can expe-
dite cryptographic computations, making MPC more viable for real-time
applications [320].

Mitigating Side-Channel Attacks

SCA exploit indirect information leakage, such as timing, power consump-
tion, or EM emissions, to infer sensitive data. To counter these threats, next-
generation MPC frameworks must incorporate comprehensive countermea-
sures, including constant-time algorithms, noise generation, and hardware-
level protections. Integrating these defenses ensures that even if an adversary
can monitor physical parameters, the extracted information remains insuffi-
cient to compromise the system’s security [247].

By embedding these countermeasures into the core architecture of MPC
frameworks, we can enhance their resilience against sophisticated attacks,
paving the way for broader adoption in various applications. Continuous
research and development are imperative to adapt to evolving threat land-
scapes and to maintain the robustness of secure computation methodologies.

23

Chapter 4

Chapter 4: Background and
Preliminaries

4.1 Secure Function Evaluation and Private

Function Evaluation

4.1.1 Definition of SFE and PFE

SFE is a cryptographic framework that enables multiple parties to compute a
function f over their private inputs while ensuring that no party learns any-
thing beyond the function’s output. This property is essential for preserving
privacy in applications such as privacy-preserving ML, secure auctions, and
medical data analysis.

PFE extends SFE by ensuring that, in addition to hiding inputs, the
function f itself remains confidential. PFE is crucial in scenarios where a
proprietary function must remain undisclosed, such as secure IP evaluation
and hidden rule-based decision-making.

4.2 Yao’s GC

GC allow two parties, referred to as a garbler (P1) and an evaluator (P2),
to securely compute a Boolean function f without revealing their private
inputs. The core idea is to transform the original Boolean circuit into a
garbled circuit, which the evaluator processes using encrypted values. The
only information revealed to the evaluator is the final output.

24

Figure 4.1: A generic garbling scheme G = (Gb,En,De,Ev, ev) cf. [35].
Our proposed secure and private DL accelerator is built upon G. Note that
capital letters on the arrows represent garbled (protected) values/functions
while lower case represent raw (unprotected) ones. The blocks in orange show
the operations performed by the NN vendor, whereas the blues ones indicate
the evaluator operations. ev denotes the typical, unprotected evaluation of
the function f against the input x, e.g., simulation of an IP using the PDK
and the EDA to obtain the output y. F , X, e and d are the counterparts of
these in the garbling scheme G that yields y after decoding Y .

The execution of GC consists of two primary processes:

• Garbling: The garbler (P1) transforms the function f into an en-
crypted circuit representation, ensuring that intermediate values re-
main hidden.

• Evaluation: The evaluator (P2) processes the garbled circuit using
encrypted values to compute the function output without learning any
intermediate results.

4.2.1 Mathematical Definition of GC

Figure 4.1, where the strings d, e, f , and F are used by the functions De, En,
ev, and Ev. A garbling scheme is a tuple of five probabilistic polynomial-time
algorithms:

G = (Gb,En,De,Ev, ev)

where:

• Gb(1λ, f)→ (F, e, d) is the garbling algorithm that transforms f into a
garbled function F , along with an encoding function e and a decoding
function d.

25

• En(e, x) → X is the encoding algorithm, which maps the plaintext
input x to garbled input X.

• Ev(F,X)→ Y is the evaluation algorithm, which computes the garbled
output Y .

• De(d, Y) → y is the decoding algorithm, which maps Y back to the
plaintext output y.

• ev(f, x) = y is the plain evaluation of f on x.

A secure garbling scheme ensures that access to (F,X, d) reveals no ad-
ditional information beyond y = f(x).

4.2.2 Garbling Process

The garbling process transforms a Boolean circuit into an encrypted version
that hides all intermediate values. This process is performed by the garbler
(P1).

Steps in the Garbling Process

Given a circuit C representing f , the garbler executes the following steps:

1. Wire Label Assignment: Each wire Wi is assigned two random
cryptographic labels:

label0i , label1i

where labelbi represents logical value b ∈ {0, 1}. These labels are ran-
domly selected from a large space to ensure secrecy.

2. Gate Garbling: For each gate G in the circuit, an encrypted truth
table is constructed:

Cx,y = Enc(labelxa, label
y
b , label

z
c)

where:

• x, y are the gate input values.

• z = G(x, y) is the output.

• Cx,y is the encrypted output label.

26

Algorithm 1: Garbling Algorithm

Input: Boolean circuit C with gates G1, G2, . . . , Gm

Output: Garbled circuit F , encoding function e, decoding function
d

Generate random labels label0i , label
1
i for each wire Wi;

foreach gate G in C do
foreach input combination (x, y) do

Compute output z = G(x, y);
Encrypt Cx,y = Enc(labelxa, label

y
b , label

z
c);

return F, e, d;

3. Oblivious Transfer (OT): The garbler sends encrypted input labels
to the evaluator using OT to ensure that P2 receives the correct input
labels without revealing P1’s private inputs.

4.2.3 Evaluation Process

The evaluation process enables the evaluator (P2) to compute the function
output using encrypted labels.

1. Input Label Retrieval: The evaluator receives garbled inputs via
OT.

2. Gate Evaluation: Using the encrypted truth table, the evaluator
decrypts the correct output label:

labelzc = Dec(labelxa, label
y
b , Cx,y)

3. Output Decoding: The evaluator maps the garbled output label to
the plaintext output y.

4.3 Optimizations of GC

GC are a cornerstone of SFE, enabling two parties to jointly compute a
function over their inputs while preserving privacy [419]. Over time, several

27

Algorithm 2: Evaluation Algorithm

Input: Garbled circuit F , encoded input X
Output: Decoded output y

foreach gate G in F do
Retrieve encrypted label Cx,y;
Decrypt labelzc = Dec(labelxa, label

y
b , Cx,y);

Decode y = De(d, Y);

(a)

Figure 4.2: Garbled gates look-up table with no optimization.

optimizations have been introduced to enhance the efficiency of GC pro-
tocols [35, 225]. This section delves into three pivotal optimizations: Free-
XOR [214], Half-Gates [428], and Row Reduction [299]. Figure 4.2 illustrates
the garbled gates look-up table without any optimization.

4.3.1 Free-XOR Optimization

The Free-XOR technique, introduced by Kolesnikov and Schneider [214],
revolutionizes the efficiency of GC by allowing XOR gates to be evaluated
without any cryptographic operations or communication overhead. This op-
timization leverages the linearity of the XOR operation to simplify the gar-
bling process, making it significantly more efficient than traditional garbling
techniques [35].

In traditional GC, each gate—whether an AND, OR, or XOR gate—requires
the construction of a garbled table containing encrypted output values for

28

(a)

Figure 4.3: Garbled gates look-up table with free-XOR optimization.

every possible combination of inputs. This process is computationally inten-
sive and increases the size of the garbled circuit [362]. However, XOR gates
possess a unique property: the XOR of two encrypted values can be directly
obtained by XORing the two ciphertexts. Exploiting this property, the Free-
XOR technique eliminates the need to garble XOR gates altogether [299].

Figure 4.3 illustrates the garbled gate look-up table with free-XOR op-
timization. The core idea behind Free-XOR is to assign a global difference,
denoted as ∆, between the wire labels corresponding to the binary values 0
and 1. Specifically, for any wire w, the labels are defined as:

Label for 0 : X0
w = kw,

Label for 1 : X1
w = kw ⊕∆,

where kw is a randomly chosen value, and ∆ is a fixed global offset shared
across all wires in the circuit [146].

Consider an XOR gate with input wires w1 and w2, and output wire w3.
The output of the XOR gate is defined as:

w3 = w1 ⊕ w2.

Using the Free-XOR optimization, the label for the output wire can be com-
puted directly:

Xw3 = Xw1 ⊕Xw2 .

This computation is possible because:

Xw1 = kw1 ⊕ b1 ·∆,

Xw2 = kw2 ⊕ b2 ·∆,

29

Algorithm 3: Free-XOR Garbling

Input: Circuit C with gates G and wires W
Output: Garbled circuit C̃ and decoding information

Choose a random global difference ∆;
foreach wire w ∈ W do

Choose a random label kw for w;
Set X0

w = kw;
Set X1

w = kw ⊕∆;

foreach gate g ∈ G do
if g is an XOR gate with input wires w1, w2 and output wire w3

then
Set kw3 = kw1 ⊕ kw2 ;

else
Garble the gate g as in the standard method [362];

Output the garbled circuit C̃ and decoding information;

where b1 and b2 are the binary values (0 or 1) on wires w1 and w2, respectively.
Therefore:

Xw3 = (kw1 ⊕ b1 ·∆)⊕ (kw2 ⊕ b2 ·∆)

= (kw1 ⊕ kw2)⊕ (b1 ⊕ b2) ·∆
= kw3 ⊕ (b1 ⊕ b2) ·∆,

where kw3 = kw1 ⊕ kw2 . This shows that the output label Xw3 corresponds
to the correct value without additional encryption [214, 78].

The security of the Free-XOR technique relies on the secrecy of the global
difference ∆. If an adversary learns ∆, they can distinguish between the la-
bels for 0 and 1, compromising the security of the protocol [78, 146]. There-
fore, ∆ must be kept confidential and chosen randomly. The Free-XOR
optimization is proven secure under the random oracle model, assuming that
the underlying cryptographic primitives are secure [214].

The Free-XOR technique reduces both the computational and communi-
cation overhead of the garbling process. The evaluation of XOR gates be-
comes a simple XOR operation on the wire labels, streamlining the evaluation
phase of the protocol. However, this technique requires the random oracle
model for its security proof, which is a stronger assumption than standard

30

(a)

Figure 4.4: Garbled gates look-up table with half-gate optimization.

models [229]. Additionally, all wire labels must share the same global differ-
ence ∆, which may impose constraints on certain circuit constructions [35].

The Free-XOR optimization significantly enhances the efficiency of GC by
leveraging the properties of the XOR operation, making SFE more practical
for complex computations [428]. It has been widely adopted in various GC-
based privacy-preserving applications, including secure MPC and privacy-
preserving ML [318].

4.3.2 Half-Gates Optimization

The Half-Gates optimization, introduced by Zahur et al. [428], is a significant
improvement over traditional garbled circuit constructions, particularly in
reducing the number of ciphertexts required for AND gates. While the Free-
XOR technique eliminates the cost of XOR gates, AND gates still require
encryption operations, making them the primary bottleneck in GC-based
protocols. The Half-Gates technique addresses this challenge by reducing the
number of ciphertexts per AND gate from four to two, thereby improving
both the communication and computation efficiency of the protocol [35].

In a standard garbled circuit, each AND gate requires four ciphertexts,
as each row in the truth table must be encrypted separately [299]. The
Half-Gates optimization leverages a novel encoding technique that allows the
evaluator to compute the output using only two ciphertexts, without compro-
mising security. This is achieved by decomposing the AND gate computation
into two separate components, each of which is garbled independently and
efficiently [214].

Figure 4.4 illustrates the garbled gates look-up table with half-gate opti-
mization. The fundamental idea behind Half-Gates is to split the evaluation

31

of an AND gate G into two intermediate computations, ensuring that the
evaluator can derive the correct output using only two ciphertexts. Let A
and B be the two input wires to the AND gate, and let C be the output
wire. The wire labels are denoted as:

X0
A = kA, X1

A = kA ⊕∆,

X0
B = kB, X1

B = kB ⊕∆,

X0
C = kC , X1

C = kC ⊕∆.

In the traditional approach, the evaluator must decrypt four ciphertexts
to determine the output label. With Half-Gates, the AND gate is decomposed
into two sub-gates, each requiring only one ciphertext. The output label for
the AND operation is computed as:

XC = E(XA, XB),

where E represents the encryption operation [428].
To construct the garbled table efficiently, the garbler generates two mask-

ing values:
λA = H(kA)⊕ (XC ⊕ gA ·∆),

λB = H(kB)⊕ (XC ⊕ gB ·∆),

where H(·) is a cryptographic hash function, and gA, gB are deterministic
functions ensuring that the evaluator selects the correct masked value during
decryption.

During evaluation, the evaluator receives the input labels XA and XB

and computes the output label using:

XC = λA ⊕H(XB) if gA = 1,

XC = λB ⊕H(XA) if gB = 1.

This ensures that only two ciphertexts are needed, significantly reducing the
garbled circuit size and improving efficiency [428].

The Half-Gates optimization improves upon prior methods by minimizing
the number of encryptions needed per gate. It reduces the communication
complexity of GC by approximately 25% compared to traditional garbling
techniques [362]. Additionally, it ensures that the evaluator only needs to
process two ciphertexts per AND gate, leading to faster execution times.

32

Algorithm 4: Half-Gates Garbling

Input: Circuit C with gates G and wires W
Output: Garbled circuit C̃ and decoding information

foreach wire w ∈ W do
Choose a random label kw;
Set X0

w = kw;
Set X1

w = kw ⊕∆;

foreach AND gate G with inputs A,B and output C do
Compute λA = H(kA)⊕ (XC ⊕ gA ·∆);
Compute λB = H(kB)⊕ (XC ⊕ gB ·∆);
Store λA, λB as the garbled table;

Output the garbled circuit C̃ and decoding information;

Security is preserved because the garbler never reveals more than neces-
sary to the evaluator. The use of a cryptographic hash function H(·) ensures
that no information about the input values is leaked beyond what is re-
quired to compute the output [428]. This makes the Half-Gates technique
particularly effective for large-scale secure computation applications, such as
privacy-preserving ML and secure MPC [318].

Overall, the Half-Gates optimization represents a significant advance-
ment in GC, reducing computational overhead while maintaining strong se-
curity guarantees. When combined with Free-XOR, it provides a highly
efficient framework for SFE, making GC more practical for real-world appli-
cations [428, 214].

4.3.3 Row Reduction Optimization

The Row Reduction optimization, introduced by Naor et al. [276], is a funda-
mental improvement in GC aimed at reducing the number of ciphertexts that
need to be transmitted and stored. In a conventional garbled circuit, each
gate is associated with four ciphertexts, corresponding to the four possible
input combinations. The Row Reduction technique exploits the structure of
garbled truth tables to eliminate one of these ciphertexts, reducing commu-
nication complexity and improving efficiency [35].

The primary motivation behind Row Reduction is to reduce the size of

33

garbled tables without compromising security. The technique works by fixing
one of the four ciphertexts in each gate’s truth table to a known constant,
eliminating the need to transmit it. This effectively reduces the garbled
table size by 25%, leading to lower memory requirements and faster evalua-
tion [299].

Garbling Process with Row Reduction

Let G be a Boolean gate with two input wires A and B, and an output wire
C. Each wire is associated with garbled labels:

X0
A = kA, X1

A = kA ⊕∆,

X0
B = kB, X1

B = kB ⊕∆,

X0
C = kC , X1

C = kC ⊕∆.

where ∆ is the global fixed offset used for encoding wire labels [35].
For a standard AND gate, the garbler constructs a truth table by en-

crypting the output labels for each possible input pair:

Tab = E(Xa
A, X

b
B, X

G(a,b)
C),

for a, b ∈ {0, 1}. This results in four ciphertexts, each encrypting the corre-
sponding output label XC .

In Row Reduction, the garbler sets one ciphertext, typically the first one
(corresponding to input (0, 0)), to an all-zero string:

T00 = 0.

This eliminates the need to transmit this value, as the evaluator can derive it
implicitly during evaluation. The remaining three ciphertexts are computed
as:

T01 = E(X0
A, X

1
B, X

G(0,1)
C),

T10 = E(X1
A, X

0
B, X

G(1,0)
C),

T11 = E(X1
A, X

1
B, X

G(1,1)
C).

34

Algorithm 5: Row Reduction Garbling

Input: Circuit C with gates G and wires W
Output: Garbled circuit C̃ and decoding information

foreach wire w ∈ W do
Choose a random label kw;
Set X0

w = kw;
Set X1

w = kw ⊕∆;

foreach AND gate G with inputs A,B and output C do
Set T00 = 0;

Compute T01 = E(X0
A, X

1
B, X

G(0,1)
C);

Compute T10 = E(X1
A, X

0
B, X

G(1,0)
C);

Compute T11 = E(X1
A, X

1
B, X

G(1,1)
C);

Store T01, T10, T11 as the garbled table;

Output the garbled circuit C̃ and decoding information;

Evaluation Process with Row Reduction

During evaluation, the evaluator receives garbled input labels XA and XB.
To determine the correct ciphertext to decrypt, they use a selection function
σ(A,B), which maps input labels to their corresponding ciphertext index:

σ(A,B) = 2A + B.

The evaluator decrypts the corresponding entry in the garbled table:

XC = D(XA, XB, Tσ(A,B)).

For the case where (A,B) = (0, 0), the evaluator directly assigns:

XC = X0
C .

since T00 is set to zero and does not require decryption [276].

Benefits and Applications

The Row Reduction optimization reduces the total garbled circuit size by
approximately 25%, improving the efficiency of SFE [276]. This technique is

35

particularly beneficial in large-scale secure computation applications, where
minimizing communication overhead is crucial [299].

Security is preserved because the missing ciphertext is deterministic and
does not reveal any additional information about the underlying data. The
cryptographic properties of the encryption function E ensure that no partial
information about the output wire labels can be inferred from the reduced
garbled table [35].

Row Reduction is commonly used in conjunction with other optimiza-
tions, such as Free-XOR and Half-Gates, to achieve further efficiency gains.
When combined, these techniques make GC more practical for applications
such as privacy-preserving ML, secure cloud computing, and MPC [428, 318].

4.4 Oblivious Transfer

Oblivious Transfer (OT) is a fundamental cryptographic primitive that en-
ables a sender to transmit multiple messages to a receiver while ensuring that
the receiver learns only one of the messages without revealing which one was
chosen. Simultaneously, the sender remains oblivious to the receiver’s choice.
This property makes OT a critical building block for secure computation
protocols, particularly in applications such as secure MPC and GC [203].
By ensuring the confidentiality of inputs, OT minimizes information leakage
during SFE.

The most basic form of OT, known as 1-out-of-2 OT, involves two parties:
a sender P1, who holds two secret messages m0 and m1, and a receiver P2,
who has a selection bit i ∈ {0, 1}. After executing the OT protocol, the
receiver learns only mi, while the sender does not gain any information about
i [301]. More generally, an 1-out-of-N OT allows the receiver to choose one
message from N possible options [275]. The security of OT is defined by
two fundamental properties: receiver privacy, which ensures that the sender
cannot determine which message the receiver has chosen, and sender privacy,
which guarantees that the receiver learns only the selected message and gains
no information about the unselected message [51].

A standard OT scheme consists of three probabilistic polynomial-time al-
gorithms: OT.Setup(1λ), OT.Send(pk,m0,m1), and OT.Receive(sk, T, i). The
setup algorithm generates the necessary cryptographic keys, where λ denotes
the security parameter. The sender encrypts the messages m0 and m1 using
the public key pk and sends the ciphertext T to the receiver. Finally, the

36

receiver, using their private key sk, selects the desired message mi without
revealing i. These operations ensure that the receiver obtains exactly one
message while maintaining privacy.

A commonly used implementation of 1-out-of-2 OT is based on public-
key cryptography, often employing HE or Diffie-Hellman key exchange. The
protocol begins with the sender generating a public-private key pair (pk, sk).
The receiver selects a bit i ∈ {0, 1} and constructs an encryption request
using pk, ensuring that the sender cannot determine the chosen bit. The
sender then encrypts m0 and m1 under two different encryptions and sends
them to the receiver. The receiver decrypts only the ciphertext correspond-
ing to their selection bit i and retrieves mi, while learning nothing about
m1−i [275].

Algorithm 6: 1-out-of-2 OT Protocol

1: Input: Sender P1 has messages m0,m1; receiver P2 has selection bit i
2: Output: Receiver learns mi; sender learns nothing about i
3: Sender generates a key pair (pk, sk)
4: Receiver selects a random value r and computes v = Enc(pk, r)
5: Receiver sends v to sender
6: Sender encrypts:

c0 = Enc(v,m0), c1 = Enc(v ⊕ pk,m1)

7: Sender sends c0, c1 to receiver
8: Receiver decrypts:

mi = Dec(ci)

9: return mi

While OT is a powerful tool for secure computation, its reliance on public-
key cryptography introduces computational overhead, making it inefficient
for large-scale applications. To address this, OT extension techniques have
been developed to enable multiple OT instances to be executed with mini-
mal cryptographic cost [188]. Instead of performing full-fledged OT for each
message transfer, a small number of base OT instances are used to generate
correlated keys for subsequent OT executions. This approach significantly
reduces computational costs, making large-scale secure computation feasi-
ble [211].

37

A further optimization, known as Silent OT, enhances efficiency by reduc-
ing the communication cost while maintaining security. Silent OT replaces
explicit OT queries with precomputed pseudo-random correlations, allow-
ing for fast key derivation [437]. This technique results in near-constant
overhead per OT instance, making it particularly advantageous for large-
scale cryptographic applications. Additionally, OT has been integrated into
hardware-based cryptographic accelerators to improve execution speed and
reduce latency in secure MPC frameworks [308].

OT finds applications in numerous privacy-preserving protocols. In GC,
OT is used to transfer garbled input labels securely, ensuring that each party
receives only the necessary information to evaluate the circuit without learn-
ing additional secrets [130]. In MPC, OT ensures that private inputs remain
confidential while enabling joint computations. Beyond secure computation,
OT is employed in password-based authentication, secure voting systems,
private information retrieval, and digital rights management.

The security of OT protocols is based on standard cryptographic hard-
ness assumptions such as the Decisional Diffie-Hellman assumption and the
Learning with Errors assumption [275]. These assumptions ensure that a
computationally bounded adversary cannot break receiver or sender privacy.
Several formal security proofs have demonstrated that under these assump-
tions, OT remains secure against various adversarial models, including semi-
honest and malicious attackers [51].

Overall, OT serves as an essential building block for SFE, ensuring that
private data can be transferred securely between parties without revealing
unnecessary information. The continual development of optimizations such
as OT extensions and Silent OT contributes to making OT-based secure
computation protocols more efficient and scalable for practical applications.

4.5 Adversary Models in Secure Computa-

tion

The security of cryptographic protocols, including secure MPC and hard-
ware security techniques, is evaluated against different adversarial models.
The choice of an adversary model significantly influences protocol design,
proof of security, and countermeasures against potential attacks. Through-
out the literature, adversary models are often categorized into two major

38

pairs: Passive (also known as Honest-but-Curious (HbC)) and Active (often
equated with Malicious). These models define the capabilities of an attacker,
dictating the security assumptions of cryptographic protocols and hardware
countermeasures.

4.5.1 Passive and Honest-but-Curious Adversary Model

A passive adversary, also commonly referred to as an HbC adversary, fol-
lows the protocol honestly but attempts to infer additional information from
observed communications and computations. The terms passive and HbC
are often used interchangeably in the literature, particularly in the context
of semi-honest secure computation protocols, where privacy is preserved as
long as participants do not deviate from their prescribed execution [132, 36].

The semi-honest adversarial model is widely studied in the MPC commu-
nity, particularly in GC [419, 34] and hybrid cryptographic protocols [267,
362]. Protocols such as SecureML [267] and CryptFlow2 [310] ensure that
intermediate computation remains hidden, providing privacy against HbC
adversaries.

From a hardware security perspective, passive adversaries are often con-
sidered in SCA, where an attacker observes unintended leakage such as
power consumption, EM emissions, or timing variations [369, 295, 370].
These adversaries do not interfere with execution but analyze information
leakage to recover cryptographic keys [56, 336]. Techniques such as DL-
based side-channel analysis have further strengthened passive attack capa-
bilities [169, 164].

In certain settings, passive adversaries may be assumed to analyze only
publicly available data but not attempt cryptographic breaks. For example,
privacy-preserving DL frameworks such as DELPHI [365] and CHET [90]
operate under this assumption, ensuring no unintended data leakage in col-
laborative ML.

4.5.2 Active and Malicious Adversary Model

An active adversary, often equated with a malicious adversary, is significantly
more powerful than a passive adversary. The terms active and malicious are
sometimes used interchangeably in cryptographic literature, although mali-
cious adversaries are generally considered a strict superset of active adver-
saries, meaning they can perform all actions of an active adversary with even

39

fewer constraints [299, 401]. Unlike semi-honest adversaries, active adver-
saries can arbitrarily deviate from the protocol, inject faults, forge messages,
and manipulate intermediate computations.

In MPC, protocols such as Secure Protocols with Dishonest Majority
(SPDZ) [231] and cut-and-choose-based GC constructions [226] provide pro-
tection against active adversaries. These protocols employ message authenti-
cation codes (MACs), zero-knowledge proofs (ZKPs), and consistency checks
to prevent malicious tampering. Malicious adversaries are also a major threat
in FHE-based secure computations, where attackers might attempt to ma-
nipulate encrypted data [119, 194].

In hardware security, active adversaries are responsible for sophisticated
attacks such as fault injection techniques [54], including laser fault injection
(LFI) [431], electromagnetic fault injection (EMFI) [54], and clock glitch-
ing [370]. These attacks attempt to alter execution flow and extract sensitive
data through induced faults.

In practical secure computation settings, adversaries classified as mali-
cious require more computationally expensive countermeasures. Protocols
such as JustGarble [187], EMP-toolkit [246], and Chameleon [318] address
malicious adversaries by incorporating cryptographic commitments, ZKPs,
and redundant computations to detect and prevent tampering. Hybrid se-
cure computation frameworks such as F1 [332] and Delphi [365] also employ
additional security layers to mitigate risks from active attackers.

From a hardware perspective, malicious adversaries can perform a com-
bination of passive and active attacks, such as power analysis combined with
fault injection [368]. Advanced ML-assisted attacks can further amplify these
threats, enabling attackers to recover cryptographic keys by leveraging cor-
relations between power traces and computational operations [166, 204].

4.6 Side-Channel Attacks: Leakage Sources

and Analysis

Secure computation protocols, including GC, OT, and Secure MPC, rely on
strong cryptographic assumptions to ensure data privacy and computation
security. However, real-world implementations of these protocols are often
susceptible to SCA, where an adversary exploits unintended physical leak-
age to infer sensitive information [210, 29, 342]. Unlike conventional crypt-

40

analysis, which targets algorithmic weaknesses, SCAs leverage the physical
characteristics of hardware implementations, making them a potent threat
against secure computing devices.

4.6.1 Side-Channel Leakage: Sources and Classifica-
tion

Side-channel leakage arises from variations in the physical behavior of cryp-
tographic implementations, which are influenced by internal data process-
ing. The most commonly studied side-channel sources include power con-
sumption, EM emissions, execution timing variations, and photonic emis-
sions [112, 209, 338]. Each of these sources provides adversaries with observ-
able patterns that can be correlated with secret information.

Power Consumption Leakage

The power consumption of a cryptographic device is not uniform across op-
erations. When performing computations, modern processors and crypto-
graphic accelerators exhibit variations in power usage, which correlate with
the processed data and executed instructions [210, 247]. This leakage is mod-
eled using Hamming weight (HW) or Hamming distance (HD) power models.

For a processor executing an operation involving bit-wise data manipula-
tion, the power consumption at time t is expressed as:

P (t) = Pstatic + αV 2
ddfclk +

n∑
i=1

CiV
2
ddDi(t) (4.1)

where Pstatic represents the static power consumption, α is the switching
factor, Vdd is the supply voltage, fclk is the clock frequency, Ci is the load
capacitance of the i-th switching node, and Di(t) represents the HW or HD
of the transitioning bits [256].

The Hamming weight model assumes that power consumption depends
on the number of ’1’ bits in a processed value:

PHW(X) ∝
n∑

i=0

Xi (4.2)

where Xi represents the bit values of the data word [369].

41

The Hamming distance model, in contrast, considers the number of bits
flipped between consecutive states of a register:

PHD(X, Y) ∝
n∑

i=0

(Xi ⊕ Yi) (4.3)

where X and Y represent two successive states of the register [247]. These
models form the foundation of power analysis attacks, where adversaries col-
lect power traces and apply statistical techniques to recover cryptographic
keys or other sensitive data.

Electromagnetic Emission Leakage

EM emissions arise from transient current variations within a microproces-
sor’s power rails and data buses. These emissions can be captured using
specialized probes and correlated with internal computations [112]. The EM
field strength at a given observation point is modeled using Maxwell’s equa-
tions, which relate the electric and magnetic fields to the current density in
the chip:

∇× E = −∂B

∂t
, ∇×H = J +

∂D

∂t
(4.4)

where E and H are the electric and magnetic field vectors, respectively,
B is the magnetic flux density, D is the electric displacement field, and J is
the current density [284].

Since cryptographic operations involve data-dependent current flow through
the processor’s power grid, these fields exhibit measurable variations corre-
lated with the processed values. Attacks exploiting this phenomenon, such
as Template EM Attacks, rely on recording multiple traces and statistically
linking them to known cryptographic operations [124].

The strength of the EM emissions depends on the distance from the device
and the loop area of the current paths inside the chip, modeled as:

EEM(t) ∝ I(t)

r2
(4.5)

where I(t) is the instantaneous current drawn by the circuit, and r is the
observation distance [93].

42

Execution Timing Leakage

Timing attacks exploit variations in execution latency caused by conditional
branching, memory access, or cryptographic table lookups. Many crypto-
graphic implementations contain operations with data-dependent execution
paths, making them susceptible to timing-based leakage [209].

The execution time of a function f(x) can be approximated as:

T (x) = Tbase +
m∑
i=1

δi · fi(x) (4.6)

where Tbase is the base execution time, δi represents the additional latency
introduced by a data-dependent operation fi(x), and m denotes the number
of such operations [57].

To mitigate timing attacks, cryptographic implementations enforce constant-
time execution, ensuring that all operations execute in a uniform number of
cycles regardless of input:

T (x) = c, ∀x (4.7)

where c is a constant execution time for all inputs [42].
Besides the commonly studied leakage vectors such as timing, power, and

EM emissions, there exist several other physical side-channel leakage sources.
These include photonic emissions, where CMOS transistors emit light during
switching [337]; acoustic leakage, where computational operations induce au-
dible or ultrasonic vibrations [118]; thermal leakage through observable heat
patterns [152]; current variations captured through USB or power lines [380];
capacitive coupling and crosstalk effects between neighboring wires [442];
close-range magnetic flux leakage using fluxgate magnetometers [443]; visi-
ble state leakage through peripheral indicators such as LED blinking [242];
and radio frequency (RF) emissions exploitable via long-range eavesdrop-
ping [392]. While these channels have demonstrated their potential in prior
work, they are beyond the scope of this dissertation and are mentioned here
for completeness.

43

4.7 Side-Channel Attacks and Evaluation

Side-channel leakages such as power consumption, EM emissions, timing vari-
ations, and photonic emissions can be exploited to extract sensitive crypto-
graphic information. These physical emanations provide an attacker with
indirect access to secret values processed by a secure implementation. The
attacks leveraging these leakages are referred to as SCA, and they have been
widely studied due to their practical effectiveness in breaking cryptographic
protocols.

SCA generally follow a structured process where an attacker collects phys-
ical leakage signals while the target device executes cryptographic operations.
The collected data is then analyzed using statistical or machine-learning-
based methods to infer secret information. SCAs range from simple power
analysis (SPA) attacks, which rely on visually inspecting power traces, to
more advanced techniques such as Differential Power Analysis (DPA) and
Template Attacks, which leverage statistical models and ML.

4.7.1 Differential Power Analysis

DPA is a statistical technique for extracting cryptographic keys from power
consumption traces [210]. Unlike SPA, which relies on visual inspection of
power waveforms, DPA uses mathematical techniques to analyze multiple
traces and identify small correlations between power consumption and cryp-
tographic computations.

The fundamental principle behind DPA is that some intermediate values
in cryptographic algorithms depend on the secret key. By modeling how these
intermediate values influence power consumption and comparing predictions
with real measurements, an attacker can recover secret keys.

The DPA attack follows a structured approach:

44

Algorithm 7: Differential Power Analysis Attack

Input: Set of power traces {Pj(t)}Nj=1, corresponding plaintexts
{Xj}Nj=1

Output: Recovery of key candidate k∗

foreach possible key guess k do
Compute hypothetical intermediate values Vj = f(Xj, k);
Apply power model to estimate power consumption Mj(k) (e.g.,
HW model);

Partition traces into two sets based on the predicted power value;
Compute the mean traces for each set:;

P (0)(t) =
1

N

∑
j∈S0

Pj(t), P (1)(t) =
1

N

∑
j∈S1

Pj(t)

Compute differential trace:;

∆P (t) = P (0)(t)− P (1)(t)

The correct key guess k∗ corresponds to the maximum peak in
∆P (t);
return k∗;

DPA is effective against cryptographic implementations that do not ex-
hibit clear patterns in power traces. By averaging power traces across mul-
tiple executions, DPA mitigates noise and isolates small variations linked to
secret key computations.

Mathematically, the success of a DPA attack depends on the correlation
between power consumption and the computed values:

∆P (t) =
1

N

N∑
j=1

P
(0)
j (t)− 1

N

N∑
j=1

P
(1)
j (t) (4.8)

A strong peak in ∆P (t) indicates the correct key guess. Countermea-
sures such as masking and randomized execution can be used to thwart DPA
attacks by reducing the correlation between power consumption and inter-
mediate values [284].

45

4.8 Side-Channel Evaluation Techniques

Secure computation implementations must undergo rigorous side-channel
evaluations to ensure resilience against potential attacks. Side-channel leak-
ages, such as power consumption, EM emissions, timing variations, and pho-
tonic emissions, serve as valuable signals for adversaries attempting to recover
secret data. The effectiveness of countermeasures such as masking, hiding,
and obfuscation is contingent upon their ability to mitigate these leakages.
To validate the security of cryptographic implementations, various statisti-
cal and machine-learning-based evaluation techniques have been developed.
These methodologies analyze the correlation between observed leakage and
secret data to determine the presence and severity of side-channel vulnera-
bilities.

The evaluation process typically begins by collecting power traces, EM
signals, or timing measurements from a cryptographic device executing sen-
sitive operations. The acquired traces are then subjected to statistical anal-
ysis to determine whether information about the secret key or intermediate
states can be inferred. A variety of statistical tests, including Welch’s t-test,
Chi-Square (χ2) analysis, and Mutual Information Analysis (MIA), provide
different perspectives on leakage detectability. Additionally, more advanced
techniques such as DCA employ ML to uncover subtle non-linear dependen-
cies in leakage patterns.

4.8.1 Welch’s t-Test for Leakage Detection

One of the most widely used evaluation methods for detecting leakage in
cryptographic implementations is Welch’s t-test [33]. This test quantifies
differences in mean power consumption between two sets of traces: one with a
fixed input and another with random inputs. A significant difference between
these sets suggests the presence of data-dependent leakage.

Mathematically, Welch’s t-test is defined as follows. Given two sets of
leakage traces, one corresponding to a fixed input (Xf) and the other cor-
responding to a randomly varying input (Xr), the test statistic is computed
as:

t =
µf − µr√
σ2
f

nf
+ σ2

r

nr

(4.9)

46

where µf and µr represent the mean values of the two sets, σ2
f and σ2

r

denote the variances, and nf , nr are the respective sample sizes. If the com-
puted |t| value exceeds a predefined threshold (typically 4.5 for a significance
level of 99.99%), the implementation is deemed to exhibit leakage. This
method is effective in detecting first-order leakage but may be inadequate for
higher-order leakage, where multiple variables need to be combined before a
distinguishable pattern emerges.

The following algorithm provides a systematic approach to applying the
Welch’s t-test for leakage detection.

Algorithm 8: Welch’s t-Test for Side-Channel Leakage Detection

Input: Set of power traces Xf (fixed input), Xr (random input)
Output: Leakage detection result
Compute mean and variance for both distributions:

µf =
1

nf

nf∑
i=1

X i
f , µr =

1

nr

nr∑
i=1

X i
r (4.10)

σ2
f =

1

nf − 1

nf∑
i=1

(X i
f − µf)2, σ2

r =
1

nr − 1

nr∑
i=1

(X i
r − µr)

2 (4.11)

Compute the t-statistic:

t =
µf − µr√
σ2
f

nf
+ σ2

r

nr

(4.12)

Compare |t| against the critical threshold (typically 4.5). If |t| > 4.5,
report leakage detected.

This algorithm provides an efficient and systematic method for analyzing
whether an implementation leaks information through power consumption
traces.

Several additional side-channel evaluation techniques exist, including:

• Correlation Power Analysis (CPA) Evaluation [56] uses Pear-
son’s correlation coefficient to determine the statistical relationship be-
tween predicted power consumption and observed leakage traces.

• Kolmogorov-Smirnov (K-S) Test [124] is a non-parametric test

47

that compares the distributions of two sets of leakage traces to detect
statistical differences.

• Principal Component Analysis (PCA) [249] is a dimensionality
reduction technique used to identify dominant leakage components in
high-dimensional side-channel traces.

• Differential Cluster Analysis (DCA) [165] applies ML-based clus-
tering techniques to side-channel traces to differentiate key-dependent
operations.

• Linear Regression Analysis [341] models side-channel leakage as a
function of secret-dependent variables to determine statistical depen-
dencies.

While these methods provide valuable insights into the resilience of cryp-
tographic implementations, they were not utilized in the evaluation presented
in this dissertation.

4.9 Fault Injection Attacks

Fault injection attacks (FIA) are a class of active physical attacks that exploit
vulnerabilities in hardware and software implementations by deliberately in-
ducing errors during execution. Unlike SCA, which passively observe leak-
ages from cryptographic operations, FIA actively modify the computation
process to force incorrect outputs, extract sensitive data, or bypass security
checks [28, 338]. These attacks have become a significant threat to secure
computation protocols such as MPC, GC, and OT, particularly in hardware
implementations.

The fundamental principle of fault injection is to introduce controlled
disturbances in a computation such that specific exploitable conditions arise.
Given an input x and a function f(x), an attacker aims to introduce a fault δ
such that the output is altered from the expected value y = f(x) to a faulty
result y′ = f(x + δ). The attacker then exploits the differences between y
and y′ to infer confidential information [354].

48

4.9.1 Mathematical Model of Fault Injection

To formally describe a fault injection attack, consider a cryptographic func-
tion f(x) operating on an input x. The execution of this function is affected
by an injected fault δ, which modifies the input, intermediate computation,
or output as follows:

y′ = f(x + δ), (4.13)

where δ represents the induced error. Depending on the attack strategy,
δ may be introduced at various levels:

1. Input perturbation: The attacker modifies the initial state of the
system by altering input values or cryptographic keys.

2. Intermediate state corruption: Errors are injected during execu-
tion, affecting registers, logic gates, or memory contents.

3. Output manipulation: The attacker attempts to manipulate the
final output directly by introducing transient or permanent faults.

In differential fault analysis (DFA), an attacker compares the faulty out-
put y′ with the correct output y to derive relationships between internal
states [46]. Given multiple faulted computations f(x + δi), statistical analy-
sis can recover secret keys by solving a system of equations:

f(x)⊕ f(x + δi) = ∆yi. (4.14)

where ⊕ denotes the bitwise XOR operation, and ∆yi is the observed
output difference caused by fault δi.

4.9.2 Types of Fault Injection Attacks

Fault injection techniques vary based on the physical method used to intro-
duce errors.

Laser Fault Injection

LFI employs focused laser beams to induce errors in semiconductor de-
vices [338]. By directing a laser pulse at specific regions of a chip, attackers
can selectively introduce bit flips or induce timing violations.

49

The energy delivered by the laser is given by:

E = P · t, (4.15)

where P is the laser power and t is the exposure time. If E exceeds a
critical threshold, charge carriers are generated in semiconductor junctions,
causing transient or permanent disruptions.

In addition to laser fault injection, which is the primary focus of this dis-
sertation, there exist several other fault injection techniques that can com-
promise hardware integrity. These include clock glitching, where precise
timing violations are introduced into the clock signal to disrupt normal in-
struction execution [28]; voltage fault injection, where deliberate fluctuations
in the power supply induce computation errors or system instability [358];
and electromagnetic fault injection (EMFI), which uses high-intensity elec-
tromagnetic pulses to corrupt logic operations or memory states [347]. While
these approaches are effective and relevant to hardware-level attack strate-
gies, a detailed analysis of them is beyond the scope of this dissertation and
is mentioned here for completeness.

4.9.3 Fault Injection Methods

FIA pose a severe threat to cryptographic and secure computation systems by
deliberately introducing errors into hardware or software implementations.
These faults, when successfully injected, can leak sensitive information or
cause unexpected behavior, compromising the integrity and confidentiality
of the computation. Faults can be broadly classified into transient faults,
permanent faults, and bit-flipping faults, each with different implications
for secure computation models. These faults occur due to environmental
influences, intentional adversarial interventions, or defects in hardware fab-
rication.

Bit-Flip Faults

Bit-flip faults are one of the most common fault injection methods, where an
adversary induces single or multiple bit inversions within a computation. A
bit-flip occurs when a stored or processed value of b ∈ {0, 1} is flipped from
b to b̄ = 1− b. Mathematically, a bit-flip attack can be described as:

b∗ = b⊕ 1 (4.16)

50

Algorithm 9: Bit-Flip Fault Injection on Secure Computation

Require: Secure function f(x), input x, fault model F
Ensure: Faulted output y∗

1: Evaluate y = f(x) under normal conditions
2: Apply bit-flip fault: b∗ = b⊕ 1
3: Inject modified value into computation: x∗ = x⊕F
4: Recompute output: y∗ = f(x∗)
5: Return y∗ and compare with y

where b∗ represents the corrupted bit value after a fault injection event. In
the context of secure computation, bit-flip faults can affect cipher execution,
key scheduling, and intermediate values in cryptographic algorithms such as
AES and RSA [210, 28]. Bit-flip faults are particularly dangerous in GC and
MPC because a single bit modification can propagate through the circuit,
altering the final result while remaining undetected.

An attacker can induce bit-flips through various methods, including volt-
age glitching, clock manipulation, and EMFI [358, 347]. These attacks exploit
physical vulnerabilities in integrated circuits (IC), where a sudden change in
environmental conditions leads to the corruption of specific data registers.

The algorithm above outlines the process of injecting a bit-flip fault into
a secure computation model. By carefully choosing when and where to inject
the fault, an attacker can manipulate specific outputs, allowing for crypto-
graphic key recovery or function leakage.

Transient Faults

Transient faults, also known as soft errors, occur when an external distur-
bance temporarily alters the state of a digital circuit without causing per-
manent damage. These faults are often caused by cosmic radiation, EM
interference, or power supply fluctuations [28, 338]. Unlike bit-flip faults,
which are typically controlled by an adversary, transient faults can occur
naturally or be induced by external attackers using laser pulses or EMFI.

The mathematical representation of a transient fault in secure computa-
tion is given by:

y∗ = f(x) + ϵ (4.17)

51

Algorithm 10: Stuck-At Fault Simulation

Require: Circuit inputs x, stuck-at fault location i
Ensure: Faulted output y∗

1: Compute normal execution: y = f(x)
2: Inject stuck-at fault: x∗i = si
3: Evaluate new output: y∗ = f(x∗)
4: Compare y∗ with y

where ϵ represents an error function that models transient disturbances.
If ϵ is predictable, attackers can exploit it to reveal secret information by
DFA [46].

Transient faults are particularly problematic in cryptographic protocols
because they can cause predictable biases in key schedules or S-box com-
putations. Attackers can induce transient faults at precise moments during
execution to extract intermediate encryption values [29].

Stuck-At Faults

Stuck-at faults (SAF) occur when a circuit node remains permanently stuck
at a logical 0 or 1, preventing normal operation. These faults are common
in hardware security evaluations, as they simulate defects in physical circuits
or deliberate hardware trojans implanted during fabrication.

In mathematical terms, a stuck-at fault at position i in an n-bit vector
can be represented as:

x∗i = si, ∀i ∈ [1, n] (4.18)

where si ∈ {0, 1} is a fixed stuck-at value, independent of normal com-
putation.

SAF are highly effective against cryptographic hardware since they can
alter critical registers, leading to leakage of secret keys or faulty computations
in secure execution environments [28].

Permanent Faults

Permanent faults are persistent errors in a circuit caused by hardware aging,
fabrication defects, or laser-induced damage. Unlike transient faults, these

52

Figure 4.5: Intel core-i7 cache architecture [274].

faults do not self-correct and can be exploited repeatedly by attackers [28,
358].

∀t > t0, x∗(t) = x∗(t0) (4.19)

where t0 is the moment at which the permanent fault is introduced.

4.10 Cache Architecture

Modern computer architectures rely heavily on cache memory to bridge the
speed gap between the Central processing unit (CPU) and main memory.
Cache memory is a smaller, high-speed storage unit placed between the CPU
and dynamic random-access memory (DRAM) to store frequently accessed
instructions and data. The presence of caches significantly improves the
performance of processors by reducing the number of direct accesses to main
memory, which are substantially more time-consuming [162]. The design and
organization of the cache hierarchy, including its size, associativity, replace-
ment policies, and coherency mechanisms, are crucial in determining system
efficiency and responsiveness [184].

4.10.1 Cache Hierarchy and Levels

Figure 4.5 presents the Intel core-i7 cache architecture. Most modern CPUs
implement a multi-level cache hierarchy, typically consisting of three levels.

The first level of cache, also known as primary cache, is the fastest but
smallest. It is typically divided into separate instruction and data caches.
The instruction cache holds executable code, while the data cache stores
frequently accessed operands [116].

The second level cache serves as an intermediate buffer between the first
and last cache levels. While slightly slower than the first level, it has a

53

larger capacity, often dedicated per CPU core, and provides rapid access to
frequently used data that has been evicted from the first level [270].

The third level cache is the last-level cache, which is the largest and
slowest among the three but serves as a shared resource for all CPU cores,
reducing redundant DRAM accesses and enhancing inter-core communication
efficiency [237].

4.10.2 Cache Inclusion Policies

The organization of cache levels is determined by the inclusion policy, which
dictates whether data present in a lower cache level must also exist in the
higher levels. The three major inclusion policies are described as follows.

A cache hierarchy is inclusive when all data present in a lower-level cache
is guaranteed to be in higher-level caches. This policy simplifies coherence
enforcement because invalidating an entry at the last-level cache ensures that
the corresponding data is also removed from lower caches [184]. However,
inclusivity reduces the effective cache capacity due to redundancy, as multiple
levels store the same data [116].

In an exclusive cache design, each data block is stored in only one cache
level at a time. If a block is promoted from the second level to the first level,
it is evicted from the second level, ensuring efficient utilization of cache space
and reducing redundancy. This approach maximizes cache storage but adds
complexity to the cache management policies [400].

A hybrid approach known as non-inclusive non-exclusive caches allows
adaptive cache management strategies where the presence of data at different
levels is not strictly enforced, optimizing performance based on workload
characteristics [219].

4.10.3 Cache Coherence in Multi-Core Processors

With the widespread adoption of multi-core processors, cache coherence is
a fundamental challenge that must be addressed to maintain consistency
among multiple cache copies of shared data. Several cache coherence proto-
cols are widely used.

The modified, shared, and invalid protocol is a simple state-based ap-
proach where a cache line can be in one of three states. Modified means
exclusively owned and changed, shared means read-only access, and invalid

54

means not present. Write operations require broadcasting updates to other
cores [184].

The modified, exclusive, shared, and invalid protocol extends the previous
protocol by introducing an exclusive state that allows a core to modify a cache
block without broadcasting until another core requests it. This optimization
reduces unnecessary communication overhead [162].

The modified, owned, exclusive, shared, and invalid protocol further im-
proves performance by allowing a cache block to be owned by a core while
still permitting shared access. This reduces memory traffic when multiple
cores require access to frequently used data [219].

Maintaining cache coherence is essential for preventing data inconsisten-
cies that can arise due to simultaneous accesses from different cores, ensuring
correctness in multi-threaded applications [270].

4.10.4 Cache Replacement and Eviction Policies

When a cache is full and a new data block needs to be loaded, an existing
block must be evicted. Several cache replacement policies exist to determine
which block is removed.

The least recently used policy evicts the block that has not been accessed
for the longest time. This policy is widely used in CPUs and achieves good
performance in workloads with temporal locality [141].

The first-in-first-out policy removes the oldest cache block regardless of
how frequently it has been accessed. While simple to implement, this method
can lead to suboptimal eviction decisions when old but frequently used data
is removed [237].

The random replacement policy selects a block randomly for eviction.
While unpredictable, this strategy prevents adversaries from exploiting de-
terministic eviction behaviors in cache-based attacks [423].

The least frequently used policy tracks access counts and removes the
least accessed block over time. While theoretically effective, it can suffer
from high overhead due to tracking access frequencies [438].

Different cache architectures and workloads benefit from different evic-
tion strategies, and some modern processors employ adaptive policies that
dynamically adjust based on application behavior [116].

55

4.10.5 Memory Access and Prefetching Mechanisms

The efficiency of memory access is a crucial factor in overall system perfor-
mance. If requested data is not found in the cache, the CPU must fetch it
from DRAM, incurring high latency.

To reduce memory access delays, modern processors employ prefetching
mechanisms, which attempt to anticipate future memory accesses and load
the relevant data into the cache in advance. Prefetching techniques include
hardware and software approaches.

Hardware prefetching is implemented at the processor level, where tech-
niques analyze access patterns and fetch data proactively. Examples include
stride-based prefetching and adjacent-line prefetching [184].

Software prefetching relies on compilers inserting explicit prefetch instruc-
tions based on program behavior, improving cache utilization for specific
workloads [438].

Efficient prefetching significantly enhances performance by reducing the
number of cache misses and minimizing DRAM accesses [162].

4.11 Neural Networks: Foundations and Ar-

chitectures

NN are a class of ML models inspired by the structure and function of bio-
logical neural systems [251, 325, 220]. They are composed of interconnected
layers of artificial neurons, where each neuron processes input data and trans-
mits an activation signal to subsequent layers. The foundation of NN lies in
the weighted summation of inputs followed by an activation function, math-
ematically expressed as:

y = f

(
n∑

i=1

wixi + b

)
, (4.20)

where xi represents the input features, wi are the weights associated with each
input, b is the bias term, and f(·) is the activation function that introduces
non-linearity into the model [138].

56

4.11.1 Feedforward and Deep Neural Networks

A feedforward neural network (FNN) is the simplest form of NN where infor-
mation flows strictly in one direction: from the input layer, through hidden
layers, to the output layer [330, 159]. Unlike recurrent NN, FNNs do not have
cycles or feedback connections, making them suitable for static input-output
mappings.

The depth of an NN is defined by the number of hidden layers, distin-
guishing between shallow and deep networks. A deep neural network (DNN)
consists of multiple hidden layers, enabling hierarchical feature extraction
and representation learning [40, 220]. Each layer in a DNN transforms its
input using a weight matrix W , a bias vector b, and a non-linear activation
function f(·):

h(l) = f
(
W (l)h(l−1) + b(l)

)
, (4.21)

where h(l) denotes the activations at layer l, and h(0) corresponds to the input
features.

4.11.2 Training Neural Networks: Backpropagation and
Optimization

Training a NN involves adjusting the weights and biases to minimize the
error between predicted and actual outputs. This optimization is achieved
through backpropagation, an algorithm that computes the gradient of a loss
function L with respect to model parameters using the chain rule of differ-
entiation [330]. The weight update at each layer follows the gradient descent
method:

W (l) ← W (l) − η
∂L

∂W (l)
, (4.22)

where η is the learning rate that controls the step size of updates. The loss
function is typically defined as the mean squared error (MSE) for regression
problems [159]:

L =
1

N

N∑
i=1

(yi − ŷi)
2, (4.23)

57

or the cross-entropy loss for classification tasks [138]:

L = −
N∑
i=1

yi log ŷi. (4.24)

Various optimizers, including stochastic gradient descent (SGD), Adam,
and RMSprop, improve convergence by adapting the learning rate dynami-
cally [206].

4.11.3 Activation Functions and Their Role

Activation functions introduce non-linearity into NN, enabling them to learn
complex patterns [273]. Common activation functions include the sigmoid,
hyperbolic tangent (tanh), and rectified linear unit (ReLU). The ReLU func-
tion, defined as:

f(x) = max(0, x), (4.25)

has become the standard choice due to its efficient gradient propagation and
ability to mitigate the vanishing gradient problem [127].

4.11.4 Convolutional Neural Networks

A convolutional neural network (CNN) is a specialized architecture designed
for spatial data such as images [221, 216]. Instead of using fully connected
layers, CNNs leverage convolutional layers that apply learnable filters to local
receptive fields:

h
(l)
ij = f

(∑
m

∑
n

W (l)
mnx(i+m)(j+n) + b(l)

)
. (4.26)

Pooling layers, such as max pooling and average pooling, reduce spatial di-
mensions and enhance translational invariance [220].

4.11.5 Neural Network Architectures and Applications

Beyond conventional architectures, various NN models are tailored for spe-
cific applications. Generative adversarial networks (GANs) generate realistic
data distributions through adversarial training between a generator and a

58

discriminator [139]. Transformer-based architectures, such as BERT and
GPT, achieve state-of-the-art performance in natural language processing by
leveraging self-attention mechanisms [394].

NN have revolutionized fields such as computer vision, speech recognition,
and autonomous systems, demonstrating superior performance in complex
pattern recognition tasks [221, 220].

4.12 Clustering

Clustering is a fundamental task in unsupervised ML [190, 201, 159], where
the objective is to group a set of data points into clusters based on their
similarities. The similarity of data points is typically determined using a
distance metric, which measures how close or far apart two points are in the
feature space. Various clustering techniques exist, each leveraging different
distance measures and optimization strategies to form coherent groupings.
One of the most widely used clustering algorithms is the k -means algorithm,
which aims to partition data points into k clusters by minimizing intra-
cluster variance, often using the squared Euclidean distance as the similarity
metric [159, 405, 351].

Different distance metrics have been proposed in the literature to measure
the similarity between data points, including Euclidean, Manhattan, Maha-
lanobis, and cosine distances [190, 100, 105]. The Euclidean distance, given
by

d(ci, cj) =

√√√√ M∑
m=1

(cim − cjm)2, (4.27)

is the most commonly used metric in clustering, particularly in k -means,
because of its straightforward interpretation and computational efficiency [159].
Another alternative, the Manhattan distance, defined as

d(ci, cj) =
M∑

m=1

|cim − cjm|, (4.28)

measures the sum of absolute differences between coordinates, making
it more robust to outliers in some cases [100]. The Mahalanobis distance
accounts for correlations between variables and scales features accordingly,

59

providing a more adaptive similarity measure [92]. Finally, the cosine sim-
ilarity metric measures the angle between two feature vectors, making it
particularly useful for text and high-dimensional clustering problems [371].

Despite the availability of multiple distance metrics, our approach em-
ploys the squared Euclidean distance due to its effectiveness in minimizing
intra-cluster variance, as demonstrated in numerous studies [351, 405]. The
k -means algorithm specifically benefits from this distance measure, as it sim-
plifies the optimization process and enables efficient centroid updates. While
other distance metrics provide alternative perspectives on similarity, they
have not been utilized in our method. Nonetheless, we acknowledge their
significance in various clustering paradigms and highlight their applicability
in specific domains such as high-dimensional data clustering, density-based
clustering, and hierarchical methods [190, 105].

4.13 Chiplet-based Processing

4.13.1 Introduction to Chiplet Architectures

Chiplet-based architectures represent a transformative shift in semiconduc-
tor design, providing a modular alternative to monolithic IC. As transis-
tor scaling nears its physical limitations, conventional monolithic designs
struggle with escalating fabrication costs, yield challenges, and thermal con-
straints [50, 349]. Chiplets address these challenges by partitioning complex
systems into smaller, functionally distinct dies that can be fabricated in-
dependently and then integrated within a Multi-Chip Module (MCM) or a
2.5D/3D packaging technology [309, 258, 89].

Chiplet-based architectures offer significant advantages in design flexibil-
ity, scalability, and performance optimization. Unlike traditional System-on-
Chip (SoC) designs that require all components to be fabricated using the
same technology node, chiplet-based processors enable heterogeneous inte-
gration, allowing different chiplets to be manufactured using process nodes
best suited to their functionality [376, 324]. This approach reduces devel-
opment costs and improves overall yield, as smaller dies are less prone to
defects than large monolithic chips [107, 306].

Inter-chiplet communication is facilitated by high-speed interconnects
such as silicon interposers, Through-Silicon Vias (TSVs), and embedded
bridges, reducing data transfer latency while maintaining power efficiency [374,

60

241]. Standardized interconnect frameworks, including Universal Chiplet In-
terconnect Express (UCIe), AMD’s Infinity Fabric, and Intel’s EMIB (Em-
bedded Multi-Die Interconnect Bridge), enable interoperability among chiplets
from different vendors, fostering a new ecosystem for reusable and modular
chiplet designs [399, 12, 122].

The widespread adoption of chiplet-based architectures extends beyond
high-performance computing (HPC) and artificial intelligence (AI) accelera-
tors to cloud computing, embedded systems, and mobile applications, where
power efficiency and scalability are critical [123, 88]. Major semiconductor
manufacturers, including AMD, Intel, and TSMC, have embraced chiplet-
based architectures to develop next-generation processors with enhanced
compute density and improved power-performance trade-offs [289, 293].

4.13.2 Security Threats in Chiplet-based Systems

While chiplet architectures enhance design modularity and scalability, they
introduce new security concerns that must be addressed for secure deploy-
ment in critical applications. The reliance on third-party vendors for fabri-
cating individual chiplets increases the risk of supply chain attacks, including
hardware Trojans, malicious circuit modifications, and backdoors [326, 383,
168]. Since chiplets originate from multiple sources, ensuring trust in out-
sourced manufacturing is a major challenge [41, 425].

One of the primary concerns in chiplet-based architectures is inter-chiplet
communication security. Unlike monolithic processors, where all components
are integrated onto a single die, chiplet-based systems rely on high-speed in-
terconnects for data exchange. This opens new attack vectors, including
SCA, where adversaries can exploit EM emissions, power consumption vari-
ations, or timing anomalies to extract sensitive data [41, 346]. To mitigate
these threats, secure serialization and encryption mechanisms such as authen-
ticated encryption, bus obfuscation, and random delay injection are employed
to protect data integrity and confidentiality across chiplets [145, 65].

FIA pose another severe threat, particularly for chiplet-based crypto-
graphic accelerators and AI processors. Techniques such as LFI, EMFI, and
power glitching can induce transient or permanent faults in chiplets, altering
their behavior or leaking cryptographic keys [312, 433, 244]. Countermea-
sures such as error correction codes (ECC), redundant computation, and
anomaly detection can enhance resilience against such attacks [304, 294].

Another critical security challenge is chiplet authentication and attesta-

61

tion. Given the heterogeneous nature of chiplets, robust mechanisms are
needed to ensure that only trusted and verified components are integrated
into a system. Hardware-based solutions, such as PUFs, cryptographic signa-
tures, and blockchain-backed supply chain tracking, are being explored to au-
thenticate chiplets before deployment [288, 5]. Runtime security monitoring
frameworks utilizing hardware root-of-trust (RoT) can further enhance trust
by continuously verifying chiplet integrity and detecting anomalies [272, 413].

4.13.3 Trusted Execution in Multi-Chip Modules

TEE are critical for ensuring the security and confidentiality of workloads
in chiplet-based architectures. Secure computing frameworks, such as Intel
SGX and ARM TrustZone, provide isolated execution environments that can
be extended to multi-chip systems to prevent unauthorized data access and
tampering [22, 314]. These secure enclaves enable privacy-preserving com-
putation for cryptographic applications, AI inference, and financial transac-
tions [244, 391].

Secure boot mechanisms play a crucial role in ensuring that only authen-
ticated chiplets and firmware are executed within a system. Secure boot
leverages cryptographic hash functions, digital signatures, and key man-
agement schemes to validate chiplet integrity at startup, preventing unau-
thorized firmware modifications or trojan-infected chiplets from being de-
ployed [302, 348]. Additionally, dynamic reconfiguration of trusted chiplets
allows real-time isolation and replacement of untrusted components, main-
taining system security even in the presence of active threats [413, 311].

Confidential computing techniques such as FHE and secure MPC offer ro-
bust solutions for protecting data privacy in multi-chip environments. These
cryptographic methods allow computations to be performed on encrypted
data without revealing the underlying information, ensuring secure data pro-
cessing across distributed chiplets [317, 149]. Such methods are particularly
relevant for cloud-based AI and federated learning applications, where data
confidentiality is paramount [327, 318].

Emerging trends in zero-trust hardware architectures focus on contin-
uous authentication and verification of chiplets before and during execu-
tion. Unlike traditional security models that assume trust in pre-verified
hardware, zero-trust architectures require continuous attestation, secure en-
claves, and anomaly detection to mitigate risks in heterogeneous multi-chip
systems [43, 294]. This approach is expected to be a cornerstone of future

62

HPC, AI accelerators, and cloud security solutions [7, 45].

63

Chapter 5

Chapter 5: Literature Review

5.1 Overview of Secure Computation Approaches

Secure computation allows multiple parties to compute a function over their
private inputs while ensuring that no party learns anything beyond the in-
tended output. This cryptographic concept is fundamental for preserving
data privacy in various applications, including privacy-preserving ML, se-
cure cloud computing, financial transactions, and biomedical data analysis.
The growing need for privacy in modern computing has fueled extensive re-
search into secure computation techniques that balance efficiency, security,
and practicality.

Over the years, several secure computation protocols have been devel-
oped, each designed to offer different trade-offs in terms of security guar-
antees, computational efficiency, and communication overhead. Among the
most prominent approaches are secure MPC, GC, and OT. These techniques
serve as building blocks for privacy-preserving computation, and continuous
optimizations have been proposed to make them more scalable and efficient.

Several cryptographic paradigms have been developed to enable secure
computation. Among them, secure MPC has emerged as a powerful frame-
work that allows multiple parties to compute joint functions while ensuring
input privacy. MPC techniques can be broadly categorized into two main
approaches: secret-sharing-based MPC and GC-based MPC, each optimized
for different use cases and security settings. The following sections explore
these two paradigms in detail, highlighting their advantages, challenges, and
optimizations.

64

5.1.1 Secure MPC

Secure MPC allows a group of parties to jointly compute a function on their
private inputs without revealing those inputs to one another. This technology
eliminates the need for a trusted third party, making it an essential tool
for privacy-preserving applications in settings where mutual trust cannot be
assumed.

There are two primary types of MPC:

• Secret-sharing-based MPC: This approach splits the input into multiple
random shares distributed among the parties. Each party holds a share
and participates in computations over their respective shares, ensuring
that no individual party can infer the original input. Only after the
computation is complete can the final result be reconstructed from the
shares.

• GC-based MPC: Instead of SS, this method transforms a function into
an encrypted Boolean circuit. The circuit is then evaluated securely,
ensuring that intermediate values remain hidden while only revealing
the final output.

Both approaches have their strengths and weaknesses. Secret-sharing-
based MPC excels in distributed settings where parties collaborate with
minimal trust, offering strong fault tolerance and resilience against failures.
However, it often requires high communication complexity due to the need
for share exchanges at each computation step. On the other hand, GC-based
MPC is well-suited for two-party scenarios, reducing the need for extensive
communication but introducing higher computational costs due to encryption
overhead.

Several notable MPC protocols have been developed, each tailored for
different security models and efficiency requirements:

Table 5.1: Comparison of Notable MPC Protocols
Protocol Year Security Model Communication Complexity Computation Complexity

GMW [130] 1987 Honest Majority O(n2|C|) O(|C|)
BGW [37] 1988 Honest Majority O(n2|C|) O(|C|)
SPDZ [86] 2012 Dishonest Majority O(n|C|) O(|C|)

The Goldreich-Micali-Wigderson protocol [130] was one of the earliest
MPC constructions, relying on SS and Boolean circuit evaluation. While it

65

introduced a foundation for secure computation, its quadratic communication
complexity limited its scalability. The Ben-Or, Goldwasser, and Wigderson
protocol [37] improved upon this by enabling fault tolerance and support-
ing computations under an honest-majority assumption. However, practical
limitations arose in large networks due to their reliance on multiparty con-
sistency checks.

A significant breakthrough came with the SPDZ protocol [86], which op-
timized secret-sharing-based MPC for adversarial settings. By introducing a
preprocessing phase, SPDZ significantly reduced online computation costs,
making it more practical for real-world privacy-preserving applications such
as financial analytics, medical data processing, and secure auctions.

While secret-sharing-based MPC techniques focus on distributing com-
putations across multiple parties, GC provides an alternative method for
secure two-party computation. Originally introduced by Yao, the garbled
circuit framework allows SFE using encrypted Boolean circuits. This tech-
nique has been widely adopted not only in two-party computations but also in
hybrid MPC frameworks. The next section details the fundamentals of GC,
optimizations, and their integration with other secure computation methods.

5.1.2 Garbled Circuits

GC, first introduced by Yao [419], provides a secure way to evaluate a Boolean
function between two parties without revealing intermediate values. This
approach encrypts a function into a set of garbled logic gates, which the
evaluator can process without learning the underlying computations.

A garbled circuit execution involves three main phases:

• GC: The garbler encrypts the function by assigning random labels to
each wire and encrypting the truth tables of all logic gates.

• OT: The evaluator receives encrypted labels corresponding to their pri-
vate input, ensuring that the garbler does not learn these values.

• Circuit Evaluation: The evaluator processes the garbled circuit using
the received labels, decrypting gates sequentially until reaching the final
output.

While GC provide strong security guarantees, they introduce significant
communication overhead due to the need for transmitting garbled truth ta-

66

bles. Over the years, several optimizations have been proposed to improve
their efficiency:

Table 5.2: Key Optimizations in GC
Optimization Year Primary Benefit

Free-XOR [214] 2008 Eliminates encryption for XOR gates
Half-Gates [429] 2014 Reduces ciphertexts per AND gate

Row Reduction [299] 2009 Minimizes encryption operations

The Free-XOR optimization [214] eliminated encryption for XOR gates
by leveraging correlated randomness, significantly reducing circuit size. The
Half-Gates technique [429] further reduced the cost of AND gates by halving
the number of ciphertexts needed for evaluation. Additionally, row reduc-
tion [299] optimized garbled table storage, minimizing memory and compu-
tation costs.

These improvements have made GC more practical for applications such
as secure cloud computing and privacy-preserving ML.

A fundamental component of GC is OT, a cryptographic primitive that
enables private input selection. OT is essential in ensuring that parties obtain
only the necessary encryption keys without revealing their actual inputs.
Since OT plays a vital role in many secure computation protocols, including
MPC and GC, it has been the subject of extensive research to improve its
efficiency. The next section explores OT techniques, optimizations, and their
impact on secure computation.

5.1.3 Oblivious Transfer

OT is a cryptographic protocol that allows a sender to transfer multiple
messages while ensuring that the receiver learns only one, without reveal-
ing which message was selected. OT is a crucial building block for secure
computation, particularly in GC, where it facilitates private input selection.

Over time, several optimizations have improved the efficiency of OT:

Table 5.3: Optimizations in OT
Optimization Improvement

OT Extension [188] Reduces expensive base instances
Silent OT [437] Reduces computational overhead

Hardware OT [308] Dedicated OT accelerators

The OT Extension technique [188] significantly reduced computational
costs by requiring only a small number of base OTs. More recently, Silent

67

OT [437] replaced expensive public-key operations with fast symmetric-key
cryptography, making OT more practical for large-scale secure computation.
Additionally, hardware-assisted OT [308] introduced specialized OT acceler-
ators, further reducing latency and improving scalability.

While cryptographic primitives such as MPC, GC, and OT provide strong
theoretical security guarantees, real-world implementations are susceptible to
physical and SCAs. These attacks exploit unintended leakage from hardware
components, such as power consumption, EM emissions, and memory access
patterns. Furthermore, adversaries can introduce faults to manipulate com-
putations and extract secret data. The next section surveys various SCA and
FIA that threaten secure computation implementations.

5.2 Survey of Side-Channel and Fault Injec-

tion Attacks on Secure Computation

Secure computation protocols, such as MPC, GC, and OT, are designed
to protect sensitive data during collaborative computations. While these
protocols offer robust cryptographic guarantees, their implementations can
be susceptible to physical and SCAs that exploit unintended information
leakages or induce faults in the system.

SCAs and FIAs represent significant threats to the integrity of secure
computation, allowing adversaries to recover sensitive data or bypass crypto-
graphic protections. This section explores the key SCAs and FIAs targeting
secure computation, their methodologies, and the impact they have on cryp-
tographic implementations.

5.2.1 Side-Channel Attacks on Secure Computation

SCAs extract sensitive information by analyzing physical emanations or re-
source usage patterns of cryptographic devices. Unlike cryptographic attacks,
which target mathematical weaknesses, SCAs leverage physical leakage that
occurs due to variations in power consumption, EM emissions, execution
timing, or cache access patterns.

Power Analysis Attacks: Power analysis attacks measure the power
consumption of a device during cryptographic operations to infer secret keys
or data. SPA directly interprets power traces, while DPA statistically an-
alyzes power variations across multiple executions to extract cryptographic

68

keys [210]. DPA is particularly effective against secure computation proto-
cols, including MPC-based secure inference and GC-based privacy-preserving
DL [29].

Electromagnetic Analysis Attacks: EM SCAs capture EM emissions
from hardware components during computation. By analyzing these emis-
sions, attackers can reconstruct processed data or extract secret keys from
cryptographic protocols [112]. Secure computation frameworks implemented
on hardware accelerators, such as field-programmable gate arrays (FPGA)-
based GC evaluators, are particularly vulnerable to such attacks due to their
predictable power and EM leakage patterns [342].

Timing Attacks: Timing attacks exploit variations in execution time
to deduce secret information. Cryptographic algorithms that involve condi-
tional branches or varying memory access times can leak information through
execution delays [57]. In secure computation, OT protocols and SFE imple-
mentations can be vulnerable to timing-based attacks, particularly when they
rely on non-constant-time cryptographic primitives [440].

Cache Attacks: Cache attacks exploit shared memory resources in
modern processors to infer data being processed. Some techniques such as
Flush+Reload [421] and Prime+Probe [353] allow an attacker to observe
cache access patterns and deduce secret information. These attacks are espe-
cially relevant in cloud-based secure computation frameworks, where multiple
parties may share computation resources [416].

Table 5.4: Summary of SCAs Against Secure Computation
Attack Type Target Methodology

Power Analysis [210] MPC
Measures power
variations to extract keys

EM Analysis [112] GC
Uses EM emissions to
recover garbled values

Timing Attack [57] OT
Exploits execution
timing variations

Cache Attack [421] Secure Computation Frameworks
Monitors cache access
patterns

5.2.2 FIAs on Secure Computation

FIAs deliberately introduce errors into a system to disrupt its normal op-
eration, potentially revealing sensitive information or compromising security
mechanisms. By inducing faults during execution, adversaries can force cryp-
tographic protocols to leak secret data or behave incorrectly.

69

Voltage Glitching: Voltage glitching involves momentarily altering the
supply voltage to introduce transient faults in computations [358]. Secure
computation protocols that rely on cryptographic primitives such as ad-
vanced encryption standards (AES) [84] or Rivest–Shamir–Adleman (RSA) [322]
can be compromised by voltage-induced faults, leading to partial key expo-
sure [347].

Clock Glitching: Clock glitching manipulates the clock signal to induce
timing errors in processing [28]. By accelerating or slowing down computa-
tion cycles, attackers can cause unintended behaviors in secure computation
frameworks, leading to data leakage or cryptographic failures [23].

Laser Fault Injection: LFI uses focused laser beams to disrupt spe-
cific areas of a chip, causing faults in the execution of cryptographic algo-
rithms [338]. This attack is particularly effective against hardware-based
secure computation, including FPGA implementations of GC and OT mod-
ules [29].

Electromagnetic Fault Injection: EMFI applies strong EM pulses
to induce transient faults in electronic circuits [347]. Secure processors and
MPC hardware accelerators are susceptible to EMFI, which can bypass secu-
rity checks or introduce computational errors that reveal sensitive data [342].

Table 5.5: Summary of FIAs on Secure Computation
Fault Type Target Methodology

Voltage Glitching [358] Secure Hardware
Induces power fluctuations
to alter computations

Clock Glitching [28] MPC Circuits
Modifies clock signals
to disrupt execution

Laser Fault Injection [338] Cryptographic Engines
Uses laser pulses
to induce controlled faults

EM Fault Injection [347] Secure Processors
Uses EM pulses
to introduce transient faults

5.2.3 Impact of Side-Channel and FIAs on Secure Com-
putation

The practical implications of SCAs and FIAs on secure computation proto-
cols are significant:

MPC: Power analysis and timing attacks can compromise the confi-
dentiality of participants’ inputs by revealing secret shares or intermediate
computations. Cache attacks further threaten the security of MPC imple-

70

mentations in cloud environments, where shared hardware resources create
additional attack surfaces [441].

GC: EM analysis can leak information about the garbled values, un-
dermining the security of the evaluated function. Furthermore, LFI can
manipulate the garbled circuit evaluation, leading to incorrect outputs or
information leakage [29].

OT: Timing discrepancies can allow adversaries to determine which in-
puts were selected, breaching protocol privacy. FIAs targeting OT modules
can compromise key agreement mechanisms, leading to information disclo-
sure [440].

Secure Hardware Implementations: FIAs can bypass security fea-
tures, extract cryptographic keys, or alter control flows, leading to unautho-
rized data access. Hardware obfuscation techniques and circuit masking can
mitigate such attacks, but they often come with increased implementation
complexity [342].

Given the wide range of attacks that can compromise secure computation
protocols, researchers have developed various countermeasures to mitigate
these threats. Masking techniques, which aim to randomize power and data
dependencies, and hiding techniques, which obfuscate execution behavior, are
two fundamental strategies used to protect cryptographic implementations.
The next section details these techniques, their effectiveness, and the trade-
offs they introduce.

5.3 Masking and Hiding Techniques

To mitigate SCAs, researchers have proposed various masking and hiding
techniques that aim to obfuscate power consumption, EM emissions, and
timing behavior during computation. These approaches prevent adversaries
from extracting sensitive information through unintended leakage channels.
However, while effective, these countermeasures introduce trade-offs in terms
of performance overhead and implementation complexity.

5.3.1 Power Analysis and EMHiding Countermeasures

One of the primary attack vectors in SCAs is power analysis, where attackers
measure power consumption fluctuations to deduce cryptographic keys or NN

71

parameters [210]. Masking techniques have been widely studied to counteract
such threats.

Boolean Masking: In Boolean masking, sensitive variables are split into
multiple shares such that each individual share leaks no information about
the original value. Computations are then performed on masked values,
ensuring that intermediate power consumption does not correlate with the
actual secret values [80]. Boolean masking has been implemented in various
secure computation frameworks, including MPC protocols and hardware-
accelerated cryptographic systems [267].

Arithmetic Masking: Unlike Boolean masking, arithmetic masking
represents sensitive values as random shares under modular arithmetic oper-
ations. This approach is particularly useful for securing DL accelerators that
rely on integer or floating-point operations [103]. Despite its effectiveness,
arithmetic masking requires additional computation to maintain masked val-
ues throughout complex mathematical transformations, leading to increased
latency [101].

Higher-Order Masking: Traditional masking schemes operate at the
first order, meaning they protect against first-order SCAs but remain vul-
nerable to higher-order power analysis. To address this, higher-order mask-
ing schemes expand the number of shares used, making statistical anal-
ysis of power traces significantly more difficult for attackers [61]. How-
ever, the computational cost grows exponentially with the order of masking,
making higher-order techniques impractical for resource-constrained environ-
ments [342].

Beyond power analysis, EM SCAs exploit EM emissions from hardware
components to reconstruct sensitive computations [112]. Countermeasures
against EM-based SCAs focus on reducing signal correlation with secret data
or introducing noise to mask relevant information.

Randomized Execution: Randomizing the order of execution for in-
structions and data processing steps disrupts consistent EM leakage patterns,
making attacks less effective [269]. However, achieving full randomization
without impacting performance remains an ongoing challenge.

Shielding and Filtering: Physical shielding using conductive enclo-
sures can prevent EM emissions from being captured externally [342]. Simi-
larly, low-pass filters can be used to suppress high-frequency leakage signals
that carry the most information [436].

Signal Blinding and Noise Injection: By injecting controlled noise
into power and EM channels, adversaries are prevented from reliably distin-

72

guishing actual signal variations due to computation [255]. While effective,
noise injection increases power consumption and may degrade overall system
efficiency.

5.3.2 Instruction-Level Obfuscation

Instruction-level obfuscation techniques aim to modify execution patterns
such that an adversary observing power or timing behavior cannot reliably in-
fer secret data. This method is commonly employed in hardware-accelerated
secure computation [385].

Dummy Operations: Introducing non-functional dummy instructions
ensures that timing and power consumption remain uniform across different
execution paths [28]. This technique is widely used in cryptographic imple-
mentations such as AES and RSA [338].

Randomized Branch Execution: Conditional branches can be ran-
domized to obscure execution flow, preventing timing-based SCAs [430].
However, this method may introduce significant control overhead and reduce
performance efficiency.

Hardware-Level Obfuscation: Some secure hardware architectures
integrate obfuscation at the microarchitectural level, ensuring that identical
operations exhibit different power signatures across executions [385]. This
is particularly useful in secure DL accelerators and cryptographic proces-
sors [240].

Table 5.6: Comparison of Masking and Hiding Techniques
Technique Operation Domain Targeted Side-Channel

Boolean Masking [80] Boolean Circuits Power (First-order)
Arithmetic Masking [103] Modular Arithmetic Power (First-order)
Higher-Order Masking [61] Boolean/Arithmetic Power (Higher-order)
Randomized Execution [269] Instruction Execution Electromagnetic
Shielding and Filtering [342] Hardware-Level Electromagnetic

Signal Blinding [255] Power/EM Manipulation Power/EM
Dummy Operations [28] Instruction Execution Power

Randomized Branch Execution [430] Control Flow Timing/Power
Hardware-Level Obfuscation [385] Microarchitecture Power/Timing

5.3.3 Limitations and Practical Challenges

While masking and hiding techniques significantly enhance security, they
come with notable drawbacks:

73

Performance Overhead: Many masking techniques require additional
computation for share management, while hiding techniques often intro-
duce redundant operations or require specialized hardware, leading to higher
power consumption [430]. Higher-order masking, for instance, dramatically
increases the computational cost due to the exponential growth of required
shares [342].

Implementation Complexity: Designing hardware and software im-
plementations that maintain security while minimizing overhead is highly
challenging [101]. Incorrect implementations can lead to security loopholes
that compromise the entire system [284]. Additionally, countermeasures such
as randomized execution demand precise synchronization to avoid introduc-
ing unintended vulnerabilities [269].

Scalability Issues: While effective for small-scale applications, higher-
order masking and noise injection techniques struggle to scale efficiently for
complex DL workloads and large secure computation frameworks [267]. For
example, hardware-level obfuscation may be effective for cryptographic func-
tions but impractical for DL inference due to resource constraints [240].

Among various secure computation techniques, GC provide strong secu-
rity guarantees through encrypted Boolean function evaluation. However,
they remain susceptible to certain side-channel and implementation-level at-
tacks. Recent research has explored integrating countermeasures such as cir-
cuit masking and leakage-resistant encoding schemes to enhance the security
of GC-based computations. The following section examines state-of-the-art
GC implementations, their optimizations, and their role in S/PFE.

5.4 Garbled Circuit and Secure/Private Func-

tion Evaluation

GC is fundamental to S/PFE, enabling privacy-preserving computation by
transforming Boolean circuits into encrypted representations that can be
evaluated without revealing intermediate values. Various implementations
of GC have been proposed to enhance efficiency and security, including
hardware-accelerated GC and hybrid cryptographic approaches. This section
presents an overview of recent advances in GC-based computation, highlight-
ing key methodologies and their applications.

74

5.4.1 Garbled Accelerators

Table 5.7 provides a summary of recent frameworks developed based on gar-
bled circuit principles. Among these, GarbledCPU [364] and RedCrypt [327]
stand out for their hardware-based implementations, while other studies fo-
cus on software-based garbling engines and evaluators [362, 25, 328, 318, 317,
173]. Additional approaches utilizing hybrid secret-sharing or ZKPs have also
been explored to counteract malicious adversaries, such as BLAZE [291],
SIMC [66], and MUSE [222], which integrate GC with cryptographic proto-
cols to enhance security.

General-Purpose Hardware Accelerators

GarbledCPU [364] introduces a hardware-based garbled circuit evaluator im-
plemented on general-purpose sequential processors. This approach ensures
privacy preservation for NN architectures. However, its design is specific to
the Microprocessor without Interlocked Pipelined Stages (MIPS) architec-
ture, limiting broader applicability. To address this constraint, the ARM2GC
framework [363] was developed, synthesizing an ARM processor circuit to
support pervasiveness and conditional execution. The efficiency of these
solutions has been reported in terms of hardware resource utilization and
communication costs.

Another contribution is the FPGA-based garbling engine FASE [174],
which extends the hardware evaluation of GC. FASE enables cloud servers
to provide secure services to multiple clients without violating data privacy.
While these implementations focus on secure computation, they do not ex-
plicitly address side-channel protection, which remains a challenge in hard-
ware accelerators.

Hardware Deep Learning Accelerators

RedCrypt [327] was designed to enhance cloud-based secure computation
by achieving high-throughput and energy-efficient GC evaluation in real-
time. Using an FPGA-based garbling core (Virtex UltraSCALE VCU108),
RedCrypt optimizes gate-level control per clock cycle, reducing idle states
and significantly increasing processing throughput. Compared to previous
implementations, such as GarbledCPU and TinyGarble [364, 362], RedCrypt
provides notable computational improvements.

75

However, RedCrypt assumes that the network architecture is publicly
known, making it more susceptible to SCAs (SCAs) [29]. This limitation
is addressed by HWGN2, which ensures model privacy by obfuscating the
architecture. HWGN2 offers an NN-agnostic approach, making it a more
versatile and secure alternative to previous GC accelerators. Additionally,
approaches such as BLAZE [291] and SIMC 2.0 [412] have extended garbled
circuit techniques by integrating them with ZKPs and MPC methods to
counteract malicious adversaries.

Zero-Knowledge Proof-Based Approaches

MUSE [222] combines ZKPs with HE to protect against malicious clients
in secure DL inference. By using ZKPs, MUSE ensures that computation
results are verifiable without revealing sensitive model parameters. However,
ZKP approaches suffer from computational complexity and require extensive
setup, limiting their practical deployment.

Building on MUSE, SIMC [66] introduced optimized verification steps,
reducing the proof size and computational overhead. The latest iteration,
SIMC 2.0 [412], further enhances security against malicious adversaries by
refining the ZK proof framework and improving scalability for large-scale DL
inference.

Secret-Sharing and Hybrid Garbled Circuit Approaches

BLAZE [291] integrates SS and GC to create a more efficient MPC framework
for secure inference. By leveraging a combination of MPC and GC, BLAZE
achieves lower communication overhead while ensuring robustness against
malicious adversaries.

Table 5.7 presents a high-level comparison of state-of-the-art approaches,
emphasizing security features such as parameter secrecy, protection against
malicious adversaries, and architecture obfuscation.

While GC enable efficient SFE, certain security challenges remain, partic-
ularly in the presence of malicious adversaries. ZKPs provide an additional
layer of security by allowing verifiable computation without revealing private
data. Furthermore, hybrid secure computation approaches combine multi-
ple cryptographic techniques—such as authenticated garbling (AG), SS, and
HE—to balance performance and security. The next section explores the

76

Table 5.7: Summary of garbled DL accelerators and their features.
Paper Adversary Model Approach Contribution

DeepSecure [328] HbC Garbling • Pre-processing to improve efficiency

Chameleon [318] HbC Hybrid
• Uses additive SS for linear operations
• Uses Yao’s GC for nonlinear operations

Ball et al. [24] HbC Hybrid
• Extends the BMR scheme [25]
• Supports efficient non-linear operations

TinyGarble2 [173]
HbC
+

Malicious
Garbling

• Protection against malicious
adversaries
• Reduces memory cost of garbling

BLAZE [291] Malicious

Secret
Sharing

+
GC

• Efficient MPC protocol for secure NN
• Reduces communication overhead

SIMC [66] Malicious
GC
+

ZK Proofs

• Enhances MUSE with faster verification
• Reduces proof size in ZK framework

SIMC 2.0 [412] Malicious
GC
+

ZK Proofs

• Improves security model for malicious adversaries
• Optimized for large-scale NN inference

role of ZKPs and hybrid approaches in enhancing secure computation frame-
works.

5.5 Zero-Knowledge Proofs and Hybrid Se-

cure Computation Approaches

Secure computation frameworks often rely on a combination of cryptographic
primitives to enhance efficiency, security, and scalability. ZKPs play a crucial
role in ensuring the integrity of SFE, while hybrid approaches integrate multi-
ple cryptographic techniques such as AG, SS, and HE to balance performance
and security. This section explores the role of ZKPs in secure computation,
discusses hybrid cryptographic approaches, and compares their practical im-
plementations in privacy-preserving DL.

5.5.1 Zero-Knowledge Proofs for Secure Computation

ZKPs allow one party (the prover) to convince another party (the verifier)
that a statement is true without revealing any additional information beyond
its validity [137, 39, 375]. This property makes ZKPs particularly useful in
secure MPC and GC by ensuring correctness without requiring full trust

77

between parties. In the context of secure computation, ZKPs are commonly
used for:

Input Consistency: Ensuring that participants use the same input
across multiple executions prevents malicious deviations [233, 66]. Without
such verification, an adversary could manipulate its inputs across different
computation rounds, leading to inconsistencies in the results.

Circuit Correctness: A fundamental challenge in GC-based compu-
tation is ensuring that the evaluated circuit correctly represents the agreed
function. ZKPs provide a mechanism for the evaluator to verify circuit cor-
rectness without learning anything about the underlying function [232].

Malicious Adversary Mitigation: In malicious settings, adversaries
may attempt to manipulate computation by deviating from the protocol.
ZKPs mitigate such risks by enforcing compliance and allowing verifiers to
detect unauthorized modifications [222, 412].

Several frameworks have integrated ZKPs to secure DL computations.
MUSE [222] employs a combination of HE, SS, and ZKPs to prevent model
inference leakage. This ensures secure NN inference even in the presence
of malicious clients. Similarly, SIMC [66] and its improved variant, SIMC
2.0 [412], optimize proof generation and execution times for secure inference
while leveraging ZKPs to enhance robustness. However, the adoption of
ZKPs introduces computational complexity, requiring additional proof ver-
ification steps that increase runtime overhead, especially in large-scale DL
applications.

5.5.2 Hybrid Cryptographic Approaches

To balance security and efficiency, several hybrid approaches have been pro-
posed, integrating GC, SS, and HE.

Authenticated Garbling

AG extends traditional GC protocols by embedding authentication mecha-
nisms to detect circuit tampering. This method enhances security by en-
abling more efficient cut-and-choose GC protocols, ensuring correctness and
input consistency [402, 233]. A key advantage of AG is its ability to strengthen
GC protocols against selective OT attacks and incorrect circuit construc-
tion [233]. However, integrating authentication increases computation over-
head due to the additional checks required for circuit validation.

78

SS with GC

Combining SS with GC offers a trade-off between communication and com-
putation efficiency. Several protocols have leveraged this hybrid approach:

Chameleon [318] employs additive SS for linear operations and GC for
nonlinear computations, ensuring efficiency while maintaining security. How-
ever, its reliance on SS introduces additional rounds of communication, which
can become a bottleneck in high-latency networks.

FLASH [60] enhances secure inference by optimizing GC and SS for
three-party computation (3PC), reducing overhead compared to purely GC-
based methods. Although it improves efficiency, FLASH depends on a three-
party setup, which may not be feasible in two-party settings.

Trident [70] focuses on ensuring fairness and robustness in secure com-
putation by integrating SFE primitives. It prevents adversaries from prema-
turely aborting computations but requires additional cryptographic checks,
which contribute to higher communication complexity.

Despite these benefits, hybrid approaches that incorporate SS necessitate
precise synchronization between parties. This dependency increases com-
munication rounds and may impact overall latency in large-scale deploy-
ments [396, 85].

HE with Secure Computation

Hybrid HE-based approaches leverage HE for performing secure computa-
tions on encrypted data [76, 430]. However, standalone HE techniques in-
troduce significant computational overhead [283], making them inefficient for
large-scale DL. To address this, several frameworks integrate HE with other
cryptographic primitives:

MUSE [222] incorporates HE alongside SS and ZKPs to protect NN
inference. This approach reduces inference leakage but still suffers from high
verification costs due to the complexity of HE-based computations.

CRYPTGPU [379] accelerates HE using GPUs, making privacy-preserving
NN inference more practical. While this improves efficiency, its scalability
remains limited to HPC environments.

SWIFT [215] combines HE with differential privacy to prevent data leak-
age in ML applications. However, the added security comes at the cost of
increased computational complexity, limiting its real-time applicability.

While HE enables secure computation over encrypted data, it remains

79

Table 5.8: Comparison of Zero-Knowledge and Hybrid Secure Computation
Approaches.

Approach Security Model Techniques
MUSE [222] Malicious HE + ZKPs + SS
SIMC [66] Malicious GC + ZKPs
Trident [70] Malicious GC + SS
FLASH [60] Malicious GC + SS

Chameleon [318] Semi-honest SS + GC
CRYPTGPU [379] Semi-honest HE (GPU-accelerated)

SWIFT [215] Semi-honest HE + DP

computationally expensive compared to GC-based methods. Hybrid frame-
works attempt to reduce reliance on HE by leveraging SS and ZKPs, opti-
mizing efficiency in secure computation scenarios [328].

Table 5.8 provides a comparative overview of different ZKP and hybrid
secure computation approaches, outlining their key techniques and security
guarantees.

80

Chapter 6

MPC for IP Protection

6.1 Motivation

The increasing complexity of semiconductor design and fabrication has raised
significant concerns regarding the security and privacy of IP. As chip manu-
facturing processes evolve, they involve multiple stakeholders, including de-
sign houses, third-party intellectual property (3PIP) vendors, and foundries,
each introducing potential risks to confidentiality and integrity. The previous
chapters have explored secure computation techniques and their applicability
in protecting sensitive computations. This chapter builds on that foundation
and focuses on leveraging MPC to enhance IP security in EDA workflows
and secure computation frameworks.

Several hardware security mechanisms have been proposed to protect IP,
including logic locking [329], encryption-based protections [14], and obfusca-
tion techniques [305]. These methods aim to prevent unauthorized access to
proprietary designs and thwart reverse engineering attacks. However, con-
ventional approaches often face challenges such as susceptibility to oracle-
guided attacks [415], vulnerability to side-channel leakages [388], and adver-
sarial model extraction [424]. As a result, secure computation techniques,
including SFE and PFE, have emerged as promising solutions to ensure the
confidentiality of hardware designs while enabling collaborative workflows
among distrusting parties.

This chapter introduces two key approaches that leverage MPC for se-
curing IP: Garbled EDA [157] and GuardianMPC [154]. Garbled EDA inte-
grates cryptographic techniques into the EDA toolchain, enabling secure and

81

privacy-preserving circuit design and verification without exposing confiden-
tial design details to untrusted tools or external entities. This method ad-
dresses the risk of IP leakage in outsourced design and verification workflows
by ensuring that only authorized computations are performed on encrypted
representations of circuits, preventing unauthorized inference of design func-
tionalities [157].

GuardianMPC extends MPC principles to broader secure computation
settings, safeguarding critical hardware security applications by enabling
distributed and privacy-preserving execution of computations. Unlike con-
ventional hardware protection mechanisms, GuardianMPC leverages secure
multi-party protocols to execute IP-sensitive operations in a way that mini-
mizes leakage risks and ensures resilience against adversarial tampering [154].
Through efficient cryptographic protocols and hardware-optimized imple-
mentations, GuardianMPC reduces computation overhead while maintaining
strong security guarantees [154].

The following sections provide a detailed methodology and evaluation
of these frameworks. By incorporating secure computation principles into
modern IP protection schemes, these approaches significantly enhance the
security and privacy of semiconductor designs, ensuring that sensitive hard-
ware components remain protected throughout the design, verification, and
deployment phases.

6.2 GarbledEDA: Privacy-Preserving Electronic

Design Automation

6.2.1 Methodology

The GarbledEDA [157] framework introduces a novel approach to secure
and private EDA by leveraging SFE and PFE techniques. This methodology
ensures that critical IP remains confidential throughout the compilation and
simulation processes while protecting against adversaries with varying levels
of sophistication. Unlike conventional security mechanisms such as IEEE
P1735 [175], which rely on encryption-based access control, GarbledEDA
employs cryptographic protocols that prevent IP disclosure even in untrusted
environments [157]. Prior research has demonstrated the vulnerabilities of
IEEE P1735, particularly concerning key extraction and reverse engineering
attacks [444, 64], making it an insufficient solution against well-equipped

82

adversaries.
At its core, GarbledEDA builds upon Yao’s GC principle [417], a cryp-

tographic method originally designed for secure two-party computation. In
this context, the EDA tool vendor assumes the role of a garbler, transforming
the raw IP and EDA tool into an encrypted (garbled) representation. The
IC designer, who acts as an evaluator, processes the garbled version with-
out gaining access to the underlying sensitive design details. This ensures
a secure EDA workflow where neither the IC designer nor the tool vendor
can extract unauthorized information [130, 364]. The security guarantees
of GarbledEDA hold even in the presence of an adversary attempting to
manipulate protocol execution, as the garbled representation remains com-
putationally indistinguishable from random data.

To support both compilation and simulation securely, GarbledEDA em-
ploys distinct cryptographic procedures tailored to each stage. During secure
compilation, the IP owner provides a design description that is processed by
the CAD tool vendor, incorporating process design kit (PDK) information.
The output is a garbled netlist, which is forwarded to the IC designer. Since
this garbled netlist is encrypted and evaluated in a privacy-preserving man-
ner, unauthorized access to proprietary logic is prevented, mitigating risks
posed by reverse engineering attempts. Similarly, during secure simulation,
proprietary simulation models and input stimuli are protected to ensure that
sensitive design information is not leaked to untrusted CAD vendors [157].
By enforcing SFE on both inputs and outputs, GarbledEDA ensures end-to-
end confidentiality during the entire design flow.

The GarbledEDA framework also addresses security threats arising from
different adversarial models. The compilation and simulation environments
are susceptible to both HbC and malicious adversaries, as illustrated in Fig-
ure 6.1. An HbC adversary, such as an IC designer or an untrusted EDA
vendor, follows the protocol correctly but attempts to infer additional infor-
mation from intermediate data. In contrast, a malicious adversary actively
deviates from the protocol by tampering with inputs, modifying garbled ta-
bles, or executing unauthorized queries to extract information [130]. Gar-
bledEDA mitigates these threats by ensuring that GC are resistant to re-
verse engineering and implementing cryptographic techniques such as OT to
securely exchange encrypted values between parties [226].

Furthermore, to ensure robustness in a real-world EDA workflow, Gar-
bledEDA integrates PFE techniques to prevent adversarial leakage of EDA
tool logic. This is particularly critical for securing proprietary CAD tool im-

83

Figure 6.1: Proposed CAD/EDA compilation and simulation of IP under
various secure scenarios. The adversary at the design house could be either
HbC or malicious, attempting to tamper with the IP-specific compiler or
simulator to extract the IP. In a secure compilation scenario, both the IP
and PDK inputs remain protected, preventing unauthorized access to pro-
prietary technology. Similarly, during simulation, secure execution ensures
that inputs remain private while restricting an untrusted CAD vendor from
gaining access to the simulation output.

plementations, which could otherwise be reverse-engineered by an untrusted
user. Unlike standard SFE, which only hides inputs and outputs, PFE en-
sures that the functionality of the EDA tool itself remains confidential [264].
As a result, GarbledEDA provides comprehensive security coverage that ex-
tends beyond data protection, ensuring that both the design IP and EDA
tool logic remain hidden from adversaries.

By leveraging GC, OT, and PFE, GarbledEDA presents a scalable and

84

cryptographically secure alternative to existing IP protection mechanisms.
It eliminates reliance on hardware obfuscation techniques, which have been
shown to be susceptible to SAT-based deobfuscation attacks [373], and mit-
igates key leakage risks associated with encryption-based schemes such as
IEEE P1735 [444]. The approach is designed to support various EDA oper-
ations, including compilation, simulation, and verification, making it adapt-
able for use in next-generation secure design workflows.

Figure 6.1 illustrates the secure execution of compilation and simulation
under different adversarial scenarios. In a secure compilation scenario, both
the IP and PDK inputs remain protected, preventing unauthorized access
to proprietary technology. Similarly, during simulation, secure execution en-
sures that inputs remain private while restricting an untrusted CAD vendor
from gaining access to the simulation output. The use of garbled repre-
sentations and secure evaluation techniques guarantees that neither the IC
designer nor the CAD vendor can compromise the integrity or confidentiality
of the design IP.

6.2.2 Secure Computation for IP Protection

The GarbledEDA [157] framework employs secure computation techniques
to ensure the confidentiality and integrity of IP throughout the EDA work-
flow. The methodology is built upon cryptographic protocols, including OT,
GC, and PFE, to prevent adversarial entities from gaining unauthorized ac-
cess to proprietary design information. Unlike traditional encryption-based
protections, which are vulnerable to key extraction attacks [444, 64], secure
computation guarantees that IP remains concealed even in hostile execution
environments [130].

At the core of GarbledEDA lies the interactive cryptographic protocol
that enables privacy-preserving compilation and simulation. The execution
follows a two-party model where the CAD tool vendor, acting as the garbler,
transforms the IP-specific compiler or simulator into an encrypted (garbled)
representation [35]. This garbled version is then transmitted to the IC de-
signer, who functions as the evaluator, executing the computation on en-
crypted data without learning the underlying IP content. By applying Yao’s
garbled circuit methodology [417], this approach extends prior work on se-
cure processors that employ encrypted instruction sets to obfuscate execution
details [364, 401].

The GarbledEDA framework integrates multiple layers of security to de-

85

fend against potential adversarial threats. One of the primary attack vectors
in SFE is tampering with GC to extract sensitive information. To mitigate
this risk, GarbledEDA incorporates cut-and-choose protocols [228], a widely
used cryptographic technique for ensuring malicious security in garbled cir-
cuit execution. This method involves generating multiple garbled versions of
the IP-specific compiler or simulator and requiring the evaluator to verify a
subset before executing the computation. Since a malicious adversary can-
not predict which versions will be inspected, the probability of successfully
injecting manipulated circuits remains negligibly low, thereby significantly
reducing the risk of undetected tampering.

Furthermore, message authentication codes (MACs) are embedded within
garbled outputs to prevent unauthorized modifications and replay attacks [133].
By applying one-time MACs, the framework ensures that any unauthorized
attempt to alter output data will be detected, thereby preserving computa-
tion integrity. This is particularly critical in scenarios where an untrusted
IC designer may seek to manipulate simulation results to extract insights
about the underlying IP. The inclusion of authenticated encryption mecha-
nisms provides additional safeguards, ensuring that even in the presence of
an adversarial execution environment, only the intended function output is
revealed to the evaluator [214].

Beyond execution integrity, GarbledEDA also addresses the challenge of
securely handling private inputs from multiple parties. In secure compilation,
the IP owner’s design files, the CAD tool vendor’s proprietary compiler, and
the IC designer’s process constraints must be protected from unauthorized
inference. Similarly, in simulation, the confidentiality of proprietary test vec-
tors and design behavior must be maintained. To achieve this, GarbledEDA
extends PFE techniques, enabling secure execution without revealing the
EDA tool’s internal logic [264]. This feature is crucial for preventing reverse
engineering attacks on proprietary simulation models, which has been a ma-
jor challenge in conventional security frameworks such as IEEE P1735 [175].

To further enhance security in multiparty settings, GarbledEDA incorpo-
rates OT as a foundational building block for input privacy. OT enables one
party (evaluator) to retrieve an encrypted function input from another party
(garbler) without revealing which specific input was chosen [218]. This guar-
antees that the IC designer can securely execute simulation or compilation
tasks without directly accessing sensitive IP components. Additionally, the
integration of randomized circuit evaluation techniques further obfuscates
computational patterns, preventing adversaries from using power analysis or

86

timing side channels to infer IP characteristics [288, 244].
By combining GC, OT, and PFE, GarbledEDA provides a robust and

cryptographically secure alternative to conventional IP protection mecha-
nisms. It mitigates vulnerabilities inherent in hardware-based obfuscation
techniques, which are often susceptible to deobfuscation via Boolean satisfia-
bility (SAT) solvers [373], and eliminates the reliance on encryption schemes
that can be compromised through key leakage [444]. The application of these
techniques ensures that the security of the IP remains intact even in adversar-
ial environments, making GarbledEDA a viable solution for next-generation
secure EDA workflows.

6.2.3 GarbledEDA Implementation Flow

The implementation of GarbledEDA follows a structured pipeline that en-
ables privacy-preserving compilation and simulation of IP cores. This method-
ology ensures that the IP remains confidential while passing through different
stages of an EDA flow. The approach is based on SFE and PFE, utilizing
state-of-the-art cryptographic primitives such as Yao’s GC and OT [130].

The workflow begins with hardware description preprocessing, in which
the given design, typically written in Verilog or C, is transformed into an in-
termediate representation for secure evaluation. This transformation is crit-
ical for compatibility with garbling-based computation frameworks that re-
quire functionally equivalent software representations of circuit descriptions.
For Verilog-based designs, the V2C tool is employed to translate the Hard-
ware Description Language (HDL) specification into a functionally equivalent
C representation [71]. V2C is specifically designed to facilitate the conver-
sion of Verilog constructs, including combinational and sequential logic, into
a format that can be processed by software-based synthesis tools. The gen-
erated C code accurately represents the logic gates and signal propagation
found in the original Verilog description, ensuring that subsequent processing
steps maintain the correctness of the original hardware design.

Once the intermediate representation is generated, the GarbledEDA frame-
work processes it further based on whether the execution is intended for a
MIPS-based or ARM-based simulation. The choice of architecture influences
how the IP is compiled, garbled, and evaluated securely. For MIPS-based ex-
ecution, the translated C representation is first compiled using a MIPS cross-
compiler, which converts the high-level design into machine-level instructions
tailored for a MIPS processor. The compiled binary is then processed by the

87

GarbledCPU framework, which is specifically designed for secure compu-
tation on MIPS architectures [364]. GarbledCPU applies the principles of
secure MPC by generating garbled MIPS instructions, which ensure that ev-
ery operation in the circuit remains encrypted throughout execution. This
transformation prevents unauthorized parties from learning the functionality
of the IP. Once the garbled instructions are generated, they are executed
using TinyGarble, an optimized garbled circuit framework that enhances the
efficiency of secure circuit evaluation [362]. TinyGarble reduces the compu-
tational overhead of SFE by applying logic optimization techniques, such as
gate reordering and precomputed garbled tables, to minimize resource con-
sumption. By executing the MIPS instructions in a garbled format, TinyGar-
ble ensures that no meaningful information about the IP structure is revealed,
even when the computation is performed in an untrusted environment.

For ARM-based execution, a different transformation pipeline is utilized.
Instead of using GarbledCPU, the ARM2GC framework is employed to pro-
cess the IP design into garbled ARM instructions [363]. ARM2GC extends
the GC approach to embedded and low-power processing environments, en-
suring secure execution on ARM architectures commonly found in Internet
of Things (IoT) devices and mobile processors. The ARM2GC framework
takes the translated C representation of the IP and applies garbled logic
transformations to produce an encrypted instruction set. These garbled in-
structions are then evaluated in a trusted execution environment, where secu-
rity guarantees prevent side-channel leakage and unauthorized access. This
methodology ensures that IP functionality is preserved while maintaining
cryptographic confidentiality.

As depicted in Figure 6.2, GarbledEDA integrates a multi-step trans-
formation process to secure both compilation and simulation of IPs. This
process ensures that no sensitive information about the IP is exposed to
untrusted parties, such as IC designers or CAD tool vendors. The parsing
and conversion of an IP description in Verilog or C format ensures compat-
ibility with cryptographic frameworks while maintaining logical correctness.
The secure compilation phase follows, where the intermediate representation
is processed through MIPS or ARM-based compilers and transformed into
garbled instructions. This guarantees that IP security is preserved at the
compilation stage, preventing unauthorized entities from reverse-engineering
the design. Finally, the encrypted execution stage ensures that the garbled
instructions are evaluated in a secure manner, where only authorized outputs
are revealed, and all intermediate computations remain concealed.

88

Figure 6.2: General flow of generating GarbledEDA. The process starts with
parsing an IP description in Verilog or C format, which is then converted to an
appropriate instruction set for secure evaluation. The garbler consists of two
main components: ARM2GC for ARM-based execution and GarbledCPU
for MIPS-based execution. The converted instructions are processed through
these frameworks to generate garbled MIPS or ARM instructions that can
be executed without exposing the original IP.

To further enhance security and performance, GarbledEDA incorporates
several optimization techniques. One key optimization is circuit minimiza-
tion, in which redundant logic operations are eliminated before garbling to
reduce computation time [173]. Additionally, batch OT protocols are uti-
lized to accelerate secure input selection, allowing multiple instances of an
IP design to be processed efficiently [19]. These optimizations significantly
reduce the performance overhead associated with secure computation, mak-
ing GarbledEDA a practical solution for industrial-scale EDA applications.

Another critical aspect of GarbledEDA’s security architecture is its re-
sistance to tampering and replay attacks. To prevent adversarial mod-
ifications, the framework employs one-time message authentication codes
(MACs), which verify the integrity of garbled instruction sequences before
execution [133]. This mechanism ensures that even if an attacker attempts
to modify the garbled circuit, the execution remains secure.

89

6.2.4 Optimizing Performance and Hardware Utiliza-
tion

The GarbledEDA framework supports two primary execution models: max-
imum performance mode and resource-efficient mode. These configurations
cater to different design constraints, ensuring flexibility in secure EDA. The
first mode prioritizes execution speed by reducing communication overhead,
while the second aims to optimize hardware utilization by efficiently man-
aging computation and memory resources. The ability to switch between
these execution strategies enables GarbledEDA to be applied across diverse
hardware environments, from HPC clusters to resource-constrained embed-
ded systems.

The maximum performance mode is designed for scenarios where com-
putation speed is the primary concern. In this setup, the garbler transmits
the entire set of garbled instructions upfront, allowing the evaluator to per-
form secure computations with minimal interaction. By reducing the number
of required OTs (OT), this approach mitigates communication latency and
improves execution efficiency [172]. This mode is particularly beneficial for
large-scale simulations and high-speed cryptographic applications where fre-
quent interaction between the parties would otherwise introduce significant
bottlenecks. The use of pre-generated GC ensures that the execution pipeline
remains uninterrupted, allowing for faster evaluation of complex IP designs.

Conversely, the resource-efficient mode is tailored for hardware-limited en-
vironments where minimizing memory usage and computational complexity
is paramount. Instead of evaluating the entire circuit at once, GarbledEDA
decomposes the design into smaller sub-netlists, which are processed sequen-
tially [173]. This technique follows the principles of incremental garbled
circuit execution, ensuring that only the necessary parts of the circuit are
active at any given time [401]. By restricting the number of simultaneously
loaded gates, the resource-efficient mode significantly reduces the memory
footprint and enables the execution of secure computations on devices with
constrained hardware resources, such as FPGA-based accelerators and em-
bedded processors [173, 401, 363, 361].

The partitioning strategy used in the resource-efficient mode is inspired by
prior optimizations in secure computation, where sub-circuits are evaluated
iteratively to manage hardware constraints efficiently [434]. The decompo-
sition process groups neighboring gates into clusters, ensuring that depen-
dencies are preserved while minimizing redundant computations. Addition-

90

ally, this method allows for more effective parallelization in multiprocessor
systems, where sub-netlists can be evaluated independently before merging
results. The trade-off, however, lies in the increased number of OT interac-
tions required to process each sub-netlist, potentially introducing additional
communication overhead.

A key feature of GarbledEDA’s optimization framework is its ability to
dynamically adapt between these two execution modes based on available
resources and application requirements. For instance, a designer working in a
high-speed simulation environment might opt for the maximum performance
mode to achieve rapid verification, while a developer targeting low-power
hardware might favor the resource-efficient mode to reduce computational
overhead. This adaptability ensures that GarbledEDA can be integrated
into a wide range of secure EDA workflows, spanning from ASIC and FPGA
design to cloud-based CAD services.

6.2.5 GarbledEDA Simulator Implementation Flow

The GarbledEDA [157] framework implements a structured, privacy pre-
serving execution model that enables secure EDA workflows, particularly in
scenarios where IP protection is paramount. The simulator execution flow
ensures that sensitive design data remains confidential throughout the com-
pilation and simulation processes while offering optimizations tailored for
either high-performance execution or memory-efficient secure evaluation.

At the core of GarbledEDA is the garbled circuit paradigm, which trans-
forms IP designs into encrypted Boolean circuits that can be evaluated
securely without revealing their structure. The framework supports both
MIPS- and ARM-based execution environments, leveraging cryptographic
techniques such as OT, cut-and-choose protocols, and integrity verification
mechanisms to prevent adversarial interference [130, 364]. Figure 6.3 presents
a detailed overview of the entire execution pipeline, highlighting two distinct
execution strategies: maximum performance execution mode and resource-
efficient execution mode.

Maximum Performance Execution Flow

The maximum performance execution flow is designed to optimize execution
speed by minimizing communication overhead. In this approach, all garbled
instructions are precomputed and transmitted in a single batch before exe-

91

Figure 6.3: Flow of GarbledEDA simulator implementation. The figure il-
lustrates (a) the maximum performance implementation (blue), which mini-
mizes communication overhead and maximizes speed, and (b) the improved
hardware resource efficiency implementation (green), which prioritizes mem-
ory efficiency by evaluating smaller sub-netlists sequentially. The first ap-
proach is optimized for high-performance applications, while the second is
suited for hardware-constrained environments.

cution begins. This strategy reduces the number of OT interactions, which
typically introduce significant computational and bandwidth overhead. By
performing a one-time transmission of encrypted logic gates, the maximum
performance mode is particularly well-suited for high-speed circuit simula-
tions where low-latency processing is crucial.

The execution pipeline in this mode begins with the garbler, typically
the CAD tool vendor or a secure IP processing unit, generating garbled
MIPS/ARM instructions corresponding to the given logic function. Each
logic gate in the IP design is converted into an encrypted truth table using
Yao’s GC method [417]. Alongside the garbled circuit, encryption and de-
cryption labels are generated for each possible input/output combination. To
ensure that the evaluator can perform computations without learning sensi-
tive design information, an OT protocol is executed between the garbler and
evaluator [19]. During this phase, the evaluator securely obtains the crypto-
graphic labels corresponding to its inputs without revealing any information
to the garbler.

Once the necessary cryptographic material is exchanged, the evaluator
processes the encrypted circuit using a garbled MIPS/ARM core [364, 362].
Execution takes place without exposing intermediate results, ensuring that
the IP remains confidential throughout the process. Upon completion, the
evaluator decrypts the garbled output labels using the decryption keys pro-
vided by the garbler, thereby obtaining the final computation results. This
approach significantly reduces OT interactions, a major performance bot-
tleneck in secure computation. However, it requires a substantial amount

92

of memory to store precomputed garbled instructions, making it ideal for
scenarios with ample computational resources but stringent execution time
constraints [172].

Resource-Efficient Execution Flow

The resource-efficient execution mode is designed for environments with con-
strained memory resources, such as FPGA-based simulation frameworks and
embedded systems [173]. Unlike the maximum performance mode, which
transmits all garbled instructions in a single batch, this approach processes
the circuit in smaller, sequential sub-netlists to optimize memory usage.

The execution pipeline begins by partitioning the full IP circuit into
smaller sub-netlists, each representing a subset of logic gates. The number
of gates per sub-netlist is adjustable based on available memory resources,
ensuring that only a limited portion of the design is active at any given
time [401]. Instead of sending all encrypted circuit data upfront, the gar-
bler transmits one garbled sub-netlist at a time. This significantly reduces
memory consumption on the evaluator’s side and allows for incremental pro-
cessing.

Each sub-netlist is processed sequentially within the garbled MIPS/ARM
core, ensuring that only a small portion of the circuit is evaluated at any
given time. After processing a sub-netlist, the partial results are decrypted
and passed as inputs to the next sub-netlist in the sequence, maintaining
data privacy while preserving execution integrity. The total number of OT
interactions in this mode is calculated as:

M =
Ngates

4
+ (Isize + Osize) (6.1)

where Ngates is the total number of gates in the circuit, Isize represents the
input size of the netlist, and Osize denotes the output size of the computa-
tion. While this approach requires additional interactive steps, it remains a
practical solution for executing secure computations in memory-constrained
settings.

Secure Execution in the Presence of Malicious Adversaries

Security in garbled circuit execution is crucial, particularly in scenarios where
an adversarial evaluator may attempt to manipulate the evaluation process to

93

extract sensitive information. Unlike many existing garbled circuit protocols
that assume an HbC adversary, GarbledEDA employs techniques for securing
execution against active (malicious) adversaries.

To mitigate tampering and unauthorized inference, GarbledEDA incorpo-
rates cut-and-choose protocols [228] and randomized execution orders [173].
The randomized execution order ensures that the evaluator cannot predict
the sequence of execution, making it extremely difficult to perform differ-
ential analysis on encrypted computations. Additionally, the final stages of
execution integrate cryptographic authentication mechanisms, such as one-
time Message Authentication Codes (MACs), ensuring that the output has
not been tampered with or replayed [133].

The implementation also introduces countermeasures to prevent fault-
injection attacks, which could alter computation results by modifying garbled
tables or input labels [244]. By integrating error correction mechanisms and
redundant computation techniques, GarbledEDA ensures that any adversar-
ial manipulation is detected and mitigated. These security enhancements
make GarbledEDA robust against both passive and active adversaries, en-
suring the confidentiality and integrity of IP during secure compilation and
simulation processes.

6.2.6 Evaluation Setup

The evaluation of GarbledEDA is conducted by implementing garbled IP-
specific simulators that securely compile and simulate a variety of bench-
mark circuits. The evaluation setup involves synthesizing garbled MIPS
and ARM instruction sets and executing them using modified processor ar-
chitectures that support garbled circuit execution. Specifically, we utilize
customized cores of Amber (ARM-based) and Plasma (MIPS-based) proces-
sors to execute garbled instructions corresponding to the given IP descrip-
tions [363, 364].

To ensure an accurate evaluation of real-world circuits, we use the ISCAS-
85 benchmark suite, a widely used set of industrial logic circuits. The suite
includes C432, C499, C1355, C1908, C3540, and C6288, which are represen-
tative of random logic circuits. Since the high-level design details of these
benchmarks are not publicly available, they serve as ideal candidates for
evaluating secure execution frameworks by simulating circuits that resemble
practical industrial applications [55].

Additionally, we compare the implementation cost of GarbledEDA us-

94

ing ISCAS-85 benchmarks with other widely used SFE benchmarks, such
as AES encryption, 8-bit SUM, HD computation, and 8-bit/256-bit multi-
plication (MULT). These benchmarks cover a broad range of computational
complexities and circuit sizes, allowing us to assess how GarbledEDA scales
across different workloads.

For implementation, we generate garbled ARM/MIPS instructions cor-
responding to different IP descriptions and store them in the instruction
memory of garbled IP-specific simulators. The synthesis process is carried
out using Vivado 2021, a well-established FPGA development tool. The
generated circuits are implemented and evaluated on an ARTIX-7 FPGA,
which provides hardware-accelerated execution of GC. This setup enables a
practical assessment of performance, resource utilization, and feasibility of
deploying GarbledEDA in secure hardware design environments.

By leveraging FPGA-based execution, we gain insight into the practical
overhead introduced by secure computation techniques. Unlike software-
based implementations of SFE and PFE that rely on CPU or GPU process-
ing, FPGA-based execution allows us to observe real-world constraints in
terms of logic utilization, memory footprint, and execution time. The FPGA
implementation also allows us to compare ARM-based and MIPS-based ar-
chitectures, providing insights into their relative efficiency for garbled execu-
tion.

Using an FPGA-based evaluation provides several advantages. FPGA
synthesis exposes the actual resource overhead of GarbledEDA, including
LUTs, FFs, MUX usage, and digital signal processing blocks (DSP) con-
sumption. Unlike traditional CPU-based evaluation, FPGA accelerates gar-
bled circuit computation through its ability to process multiple logic gates in
parallel. Additionally, the FPGA execution platform helps assess hardware-
specific vulnerabilities such as side-channel leakages in the presence of FIA [312,
413].

Thus, GarbledEDA’s evaluation methodology combines practical hard-
ware execution with strong cryptographic guarantees to ensure secure com-
pilation and simulation of IPs.

6.2.7 Resource Utilization Evaluation

The evaluation of GarbledEDA’s resource utilization provides a comprehen-
sive understanding of the computational overhead introduced by SFE and
PFE techniques. By analyzing the logical and memory resources required

95

to implement GarbledEDA on an FPGA, we can assess the feasibility of de-
ploying privacy-preserving IP simulation and compilation in real-world EDA
workflows. This evaluation includes analyzing the synthesis and implemen-
tation costs of GarbledEDA when applied to various benchmarks across dif-
ferent computational complexities, including cryptographic functions, arith-
metic operations, and industrial logic circuits.

To quantify the resource requirements of GarbledEDA, we implement a
series of benchmark circuits using both ARM- and MIPS-based architectures.
The evaluation covers a broad range of benchmarks, from simple arithmetic
functions such as 8-bit SUM and HD to complex cryptographic and industrial
benchmarks like AES encryption and ISCAS-85 circuits. These benchmarks
provide a representative set of workloads to analyze the scalability of Gar-
bledEDA across different domains. The synthesis process is carried out using
Vivado 2021, with the resulting designs implemented on an ARTIX-7 FPGA
to measure logic utilization, FF consumption, and memory requirements.

Table 6.1 presents the resource utilization of GarbledEDA in its maxi-
mum performance mode. The results include the number of lookup tables
(LUTs), flip-flops (FF), and multiplexers (MUXes) required to implement
each benchmark, along with the total number of garbled instructions exe-
cuted. The table also provides a breakdown of XOR and non-XOR gates in
each benchmark, highlighting the impact of Free-XOR optimization. Values
outside the parentheses correspond to ARM-based implementations, while
those inside the parentheses represent MIPS-based implementations.

A key insight from Table 6.1 is the impact of Free-XOR optimization,
which significantly reduces the overhead of GarbledEDA when applied to
benchmarks with a high number of XOR gates. For example, the AES
benchmark, which primarily consists of XOR operations, demonstrates sub-
stantially lower hardware costs compared to non-XOR-intensive benchmarks
of similar gate complexity. Despite having only 272 more gates than C6288,
GarbledEDA for C6288 consumes four times more logical and memory re-
sources due to the absence of XOR operations, which limits the effectiveness
of Free-XOR optimization.

Benchmarks with more XOR gates exhibit lower resource utilization even
when their total gate count is comparable to benchmarks dominated by non-
XOR gates. The 256-bit multiplication benchmark, for instance, contains 163
more gates than C6288 but requires only half the logic and memory resources
for its GarbledEDA implementation. This trend underscores the efficiency
of Free-XOR optimization in reducing the cost of secure computation by

96

Table 6.1: GarbledEDA with maximum performance implementation cost of
different benchmarks in ARM(MIPS).

Benchmark XOR Other Inst. LUT FF MUX

Amber(Plasma) N/A N/A 64 3526 (1817) 1830 (1255) 229 (292)

8-bit SUM 48 96 30 22796 (9319) 20169 (7166) 1672 (523)

16-bit Hamming 3 39 47 25116 (17591) 21835 (13742) 1646 (1179)

8-bit MULT 43 139 93 32075 (32973) 26262 (25598) 1840 (1864)

C499 104 198 236 86445 (110012) 58582 (83278) 4016 (9105)

C432 18 222 276 91829 (130163) 69104 (97263) 5487 (11390)

AES 2112 576 426 158870 (287334) 102112 (200179) 6896 (16085)

C1355 0 746 1335 237967 (506471) 145800 (394247) 9816 (26025)

C1908 0 880 1560 271495 (528364) 167340 (417282) 10911 (27752)

256-bit MULT 1303 1276 2012 361637 (712398) 220591 (512895) 14856 (39063)

C3540 0 1669 3008 513105 (1009021) 306512 (787454) 19792 (52407)

C6288 0 2416 4669 788181 (1523564) 465723 (944478) 30080 (60445)

leveraging fast XOR gate evaluations in GC.
To assess the worst-case overhead of GarbledEDA, we analyze the re-

source consumption of benchmarks with no XOR gates, including C1355,
C1908, C3540, and C6288. These benchmarks serve as an upper bound for
hardware cost since they do not benefit from XOR-based optimizations. On
average, the implementation of GarbledEDA for these benchmarks requires
8.5 times more logic resources and 10.5 times more memory resources com-
pared to their ARM-based architecture designs. For MIPS-based implemen-
tations, the overhead is slightly higher, with an increase of approximately 9.5
times in logic utilization and 8 times in memory consumption.

Comparing ARM- and MIPS-based implementations provides additional
insights into architectural trade-offs. While both architectures impose sig-
nificant overhead compared to unprotected designs, the specific resource de-
mands vary based on benchmark characteristics. A notable distinction is the
use of digital signal processing (DSP) blocks. ARM-based implementations
require DSPs, while MIPS-based implementations do not, allowing greater
flexibility in selecting architectures based on available hardware resources.
If DSP availability is a constraint, MIPS-based implementations provide an
alternative that avoids DSP dependency.

Another key observation is that MIPS-based implementations tend to
be more resource-efficient for benchmarks with fewer than approximately

97

90 garbled instructions. For benchmarks exceeding this threshold, ARM-
based implementations become more efficient. This suggests that the choice
of architecture should be guided by the computational complexity of the
target design. For lightweight designs, MIPS offers a better balance between
performance and resource utilization, whereas for more complex benchmarks,
ARM provides superior scalability.

Despite the non-trivial overhead associated with GarbledEDA, the re-
sults confirm its viability for secure IP protection in practical scenarios. The
scalability of the framework across different computational workloads and
architectures indicates that privacy-preserving EDA can be integrated into
secure design flows without prohibitive resource costs. The next section ex-
plores further optimizations to reduce hardware overhead while maintaining
the security guarantees of the GarbledEDA framework.

6.2.8 GarbledEDA with a Selector

One of the main challenges associated with GarbledEDA is the high hardware
resource overhead introduced by the secure evaluation process. As demon-
strated in previous sections, SFE and PFE incur significant logic and memory
resource utilization due to the transformation of circuit elements into crypto-
graphic representations. To address this concern, we propose an optimization
technique that allows multiple IPs to be merged into a single GarbledEDA
instance using a selector, thereby reducing overall implementation costs.

The fundamental idea behind this optimization is to leverage a unified
evaluation core while allowing multiple IPs to be processed within the same
hardware instance. Instead of implementing separate GarbledEDA instances
for each IP, a single implementation is designed to accommodate multiple
IPs by incorporating a selector mechanism. This selector is responsible for
dynamically switching between different instruction sets and garbled tables
corresponding to the various IPs included in the system. By doing so, the
overhead associated with maintaining multiple independent evaluator cores
is eliminated, leading to substantial reductions in resource consumption.

To demonstrate the efficacy of this approach, we implemented a Gar-
bledEDA instance with a selector that can process three different bench-
marks: C499, C432, and AES. Table 6.2 presents a comparison between the
resource utilization of GarbledEDA implementations for individual bench-
marks and the combined GarbledEDA with a selector. The results indicate
that the combined implementation significantly reduces the number of LUT

98

Table 6.2: Comparison between implementation costs of GarbledEDA (max-
imum performance) with a selector vs. GarbledEDA of individual bench-
marks.

Benchmark XOR Other Inst. LUT FF MUX

C499 104 198 236 86445 (110012) 58582 (83278) 4016 (9105)

C432 18 222 276 91829 (130163) 69104 (97263) 5487 (11390)

AES 2112 576 426 158870 (287334) 102112 (200179) 6896 (16085)

Combination 2366 1053 491 176134 (290873) 264937 (417391) 4608 (14936)

and MUX while slightly increasing FF utilization. This trade-off is expected,
as the selector-based approach requires additional storage to maintain the
garbled tables and input labels for all included IPs.

As seen in Table 6.2, the use of a selector reduces LUT utilization by
47.3% and 44.8% in ARM and MIPS architectures, respectively. Similarly,
the number of MUXes is reduced by 78.9% and 59.2%, demonstrating the
efficiency of combining multiple IPs under a unified GarbledEDA instance.
However, the FF utilization is slightly increased by 13.3% in ARM and 8.79%
in MIPS architectures. This increase is due to the need for additional storage
to accommodate the instruction sets and intermediate data corresponding to
each IP.

A key advantage of this approach is that it significantly reduces the num-
ber of evaluator cores required for execution. Without a selector, implement-
ing GarbledEDA for three separate IPs would necessitate three independent
instances, each with its own set of evaluator cores and instruction storage.
In contrast, the selector-based design consolidates these resources, allowing
a single evaluator core to process multiple IPs dynamically. This leads to
improved hardware efficiency and lower FPGA area consumption.

Another benefit of using a selector-based approach is its applicability to
real-world use cases where multiple secure IPs need to be simulated or com-
piled within a single environment. Many modern IC incorporate multiple
functional blocks, each designed by different third-party vendors. Ensuring
the confidentiality of these blocks while maintaining efficient hardware uti-
lization is a critical challenge. The selector mechanism allows an IC designer
to compile and simulate multiple IPs securely without incurring the excessive
overhead associated with independent implementations.

From an implementation perspective, incorporating a selector requires
careful management of instruction memory and label assignments. Each

99

IP has a predefined instruction set that must be stored separately, and the
selector dynamically determines which instruction set is executed at any
given time. The execution flow is adjusted accordingly, ensuring that only the
relevant portions of the garbled circuit are evaluated based on the selected IP.
This prevents unnecessary computation and minimizes power consumption,
making the approach suitable for resource-constrained environments.

It is important to note that while this optimization provides substan-
tial resource savings, it does introduce some trade-offs. One of the main
challenges is ensuring that the selector mechanism does not introduce ad-
ditional latency or processing overhead. However, our results indicate that
this overhead is minimal compared to the overall savings in logic and memory
utilization. Additionally, the increased FF utilization is an expected conse-
quence of consolidating multiple IPs into a single instance, but it remains
within an acceptable range.

Overall, the selector-based GarbledEDA implementation offers a practical
and scalable solution for reducing hardware resource overhead while main-
taining the strong security guarantees provided by SFE. By consolidating
multiple IPs under a single execution framework, this approach enables more
efficient utilization of FPGA resources, making it well-suited for secure EDA
in large-scale applications.

6.2.9 GarbledEDA with an Improved Hardware Re-
source Efficiency Evaluation

The implementation of GarbledEDA in its maximum performance mode pri-
oritizes execution speed at the cost of significant resource utilization. How-
ever, in practical applications where FPGA resources are constrained, a more
hardware-efficient execution strategy is required. To address this, the Gar-
bledEDA framework incorporates an improved hardware resource efficiency
mode, which focuses on reducing resource utilization while maintaining the
security guarantees of the garbled circuit approach. This optimization is par-
ticularly important for large-scale benchmarks where maximum performance
execution would result in prohibitive FPGA overhead.

In the improved hardware resource efficiency mode, GarbledEDA takes
advantage of a gate-level decomposition approach, where the circuit is bro-
ken down into smaller sub-netlists. Rather than evaluating the entire circuit
in a single execution cycle, each gate or small group of gates is processed

100

Table 6.3: Garbled EDA with an improved hardware resource efficiency im-
plementation cost of different benchmarks in ARM(MIPS).

Benchmark XOR Other Inst. LUT FF MUX OT

8-bit SUM 48 96 30

1941(1775) 823(1406) 152(289)

64

AES 2112 576 426 682

256-bit MULT 1303 1276 2012 3036

C6288 0 2416 4669 4733

separately, reducing the peak memory and computational load at any given
time. This approach ensures that only the necessary portions of the de-
sign are active during execution, thereby minimizing the logic and memory
resources required. Unlike the maximum performance mode, where the gar-
bled instructions corresponding to the entire IP description are loaded and
executed at once, this approach sequentially evaluates each garbled instruc-
tion, preventing unnecessary hardware overhead.

Since each sub-netlist consists of a small number of neighboring gates
from the original design, the evaluation process follows a structured order
where each set of encrypted operations is sequentially fed into the evalua-
tion core. The mapping between the sub-netlists and their original design
positions is securely handled by the garbler, ensuring that an adversary can-
not gain insights into the circuit structure even if they attempt to analyze
the order of execution. This methodology aligns with previously proposed
hardware-optimized garbled circuit execution frameworks, such as those ex-
plored in [173], where netlist partitioning was shown to be effective in reduc-
ing execution overhead.

The key advantage of this approach is the significant reduction in FPGA
resource utilization. Table 6.3 provides a comparative evaluation of Gar-
bledEDA implementations under the maximum performance mode and the
improved resource efficiency mode. The hardware resource costs are shown
for benchmarks of varying complexities, including a small-scale computa-
tion such as 8-bit SUM, a cryptographic benchmark like AES, a moderate-
scale computation such as 256-bit multiplication (MULT), and a large-scale
benchmark like C6288. Despite the differences in circuit size, the improved
hardware efficiency mode maintains a consistent and predictable resource
consumption across all benchmarks.

As seen in Table 6.3, the implementation costs in terms of logic utilization
(LUT), FFs, and multiplexers (MUX) remain nearly constant across differ-

101

ent benchmarks when the improved hardware resource efficiency approach
is used. This is because the underlying architecture only evaluates a single
instruction per cycle, meaning that the required FPGA logic remains fixed
regardless of the circuit size. Unlike the maximum performance mode, which
scales resource utilization linearly with the circuit complexity, the improved
efficiency mode ensures that resource usage is predictable and manageable.

A key trade-off in this optimization is the increase in the number of OT
interactions. Since each gate evaluation requires a separate garbled instruc-
tion to be loaded and executed, the number of OTs increases proportionally
with the circuit size. For instance, while the 8-bit SUM benchmark requires
only 64 OT operations, the AES benchmark requires 682 OTs, and the C6288
benchmark, one of the largest circuits in the ISCAS-85 suite, requires 4733
OTs. This increase in OT operations introduces a slight performance over-
head, as each OT requires additional computation and communication be-
tween the garbler and the evaluator. However, in applications where FPGA
resources are the primary constraint, the trade-off between execution time
and resource savings is often acceptable.

Another advantage of the improved hardware efficiency mode is its appli-
cability to scenarios where circuit inputs and outputs are minimal compared
to the total number of logic gates. As observed in [173], when the I/O size of
a circuit is negligible in comparison to the number of logic gates, this mode
achieves optimal security and efficiency trade-offs. Moreover, even for small
benchmarks such as 8-bit SUM, the resource-efficient mode results in con-
siderable savings in hardware usage, making it a viable approach for a wide
range of secure hardware designs.

The results in Table 6.3 also highlight an important observation regard-
ing architecture selection. The ARM-based implementation of GarbledEDA
exhibits slightly higher hardware resource utilization compared to the MIPS-
based implementation. This discrepancy is attributed to the differences in
how ARM and MIPS architectures handle FF storage and instruction decod-
ing. Specifically, the MIPS-based implementation avoids using DSP blocks,
which can be a crucial factor when deploying GarbledEDA in resource-
constrained environments. As a result, selecting the appropriate architecture
depends on the specific hardware constraints of the target system.

In conclusion, the improved hardware resource efficiency implementa-
tion of GarbledEDA provides a significant reduction in FPGA resource con-
sumption while maintaining secure computation guarantees. By adopting
a sequential execution model that processes smaller circuit fragments, the

102

Table 6.4: Comparison between implementation costs of GarbledEDA (maxi-
mum performance) vs. GarbledEDA (resource-efficient) for small, moderate,
and large benchmarks.

Benchmark Inst.
OT

(Resource
Efficient)

Time (Sec) Peak Memory (MB)

Maximum
Performance

Resource
Efficient

Maximum
Performance

Resource
Efficient

8-bit SUM 30 64 4.9E-5 3E-3 6.8 0.33

AES 426 682 6.2E-5 1.6E-2 51.2 3.54

256-bit MULT 2012 3036 1E-4 7.3E-2 102.4 15.12

C6288 4669 4733 2.3E-4 1.1E-1 25.6 23.66

framework enables practical deployment of secure EDA tools on constrained
hardware platforms. The trade-off between resource savings and OT over-
head must be carefully balanced depending on the application requirements.
For use cases where execution speed is a priority, the maximum performance
mode remains preferable, whereas applications with strict resource limita-
tions benefit from the optimized resource-efficient execution model.

6.2.10 GarbledEDA Execution Time and Peak Mem-
ory Cost Evaluation

The execution time and memory overhead of GarbledEDA are critical factors
in assessing its viability for secure hardware design automation. The eval-
uation of execution performance is conducted by comparing the maximum
performance and resource-efficient implementations across multiple bench-
marks. The experiments were performed on a computing setup consisting of
an Intel Core i7-7700 CPU running at 3.60 GHz with 16 Gigabyte (GB) of
RAM, executing the garbling process, and an ARTIX-7 FPGA board running
the Garbled MIPS/ARM evaluator core. The FPGA operates at a 20 MHz
clock frequency, ensuring a practical representation of real-world execution
constraints.

Table 6.4 presents a detailed comparison of execution time and peak mem-
ory usage for both implementations. The execution time results indicate
the performance trade-offs introduced by SFE techniques, while the memory
footprint analysis provides insights into the hardware resource constraints
imposed by different implementation flows.

The maximum performance implementation follows an unrolled execu-

103

tion flow, where all encrypted instructions and labels are precomputed and
transferred to the evaluator upfront. This minimizes interactive overhead by
requiring only one OT interaction per input-output transaction. As a result,
the execution time remains close to the baseline MIPS/ARM execution time,
with a marginal increase due to the additional cryptographic computations
involved in garbled circuit evaluation. Each instruction in the maximum per-
formance implementation is executed in 50 nanoseconds (ns), corresponding
to a single clock cycle on the FPGA.

In contrast, the resource-efficient implementation follows a sequential exe-
cution model, where encrypted gates are evaluated one at a time, significantly
reducing the memory footprint. This approach, while beneficial in minimiz-
ing logic utilization, introduces additional OT interactions, leading to in-
creased execution latency. Each instruction in the resource-efficient model
takes 150 ns, equivalent to three clock cycles per operation. Additionally,
since OT is performed per gate rather than per batch of instructions, the
overall execution time scales with the number of evaluated gates, making it
suitable only for applications where hardware resource constraints outweigh
performance requirements.

The impact of OT interactions on execution latency is evident in Ta-
ble 6.4. The 8-bit SUM benchmark, which consists of only 30 instructions,
executes in 4.9E-5 seconds in the maximum performance mode but requires
3E-3 seconds in the resource-efficient mode due to the additional OT inter-
actions. The effect is even more pronounced in complex benchmarks such as
AES, where execution time increases from 6.2E-5 seconds in maximum per-
formance mode to 1.6E-2 seconds in the resource-efficient mode. This 260x
slowdown highlights the trade-offs between execution speed and hardware
resource conservation.

Peak memory usage is another crucial consideration in GarbledEDA eval-
uation. The maximum performance implementation requires all garbled in-
structions, encryption labels, and middle wire labels to be preloaded into
the FPGA’s memory, leading to a significantly larger memory footprint. On
average, the maximum performance implementation consumes 5-25x more
memory than its resource-efficient counterpart. The AES benchmark, for in-
stance, requires 51.2 MB in maximum performance mode, while the resource-
efficient mode reduces this footprint to 3.54 MB. Similarly, the 256-bit MULT
benchmark, one of the most computationally demanding workloads, requires
102.4 MB in the maximum performance setup, compared to 15.12 MB in the
resource-efficient implementation.

104

The difference in memory consumption stems from how garbled circuit
evaluations are structured in each mode. In the maximum performance im-
plementation, all garbled tables and cryptographic labels are prepared in
advance, requiring a large buffer to store intermediate values. Meanwhile,
in the resource-efficient model, only a small subset of encrypted instructions
are processed at a given time, significantly reducing peak memory usage.
However, the increased number of OT interactions in this model results in
higher communication overhead and longer execution times.

Furthermore, the number of OT interactions directly influences execution
time and memory utilization. In the maximum performance implementation,
the total OT overhead is limited to the summation of input and output sizes,
while in the resource-efficient implementation, OT overhead scales with the
number of evaluated gates. The execution of each OT interaction requires 24
microseconds (µs), adding to the cumulative execution time. Additionally,
for each input-output bit, 3.2 kilobytes (kB) of memory are required for OT,
contributing to the overall resource demand.

A significant observation from Table 6.4 is that benchmark complexity
does not always correlate linearly with execution time and memory cost.
For instance, although AES contains significantly more logic operations than
the 8-bit SUM benchmark, its execution time and memory footprint do not
increase proportionally due to the presence of XOR gates, which benefit from
Free-XOR optimizations [214]. In contrast, C6288, a large arithmetic circuit,
incurs the highest computational overhead due to its complex gate structure,
requiring 4733 OT interactions in the resource-efficient implementation.

The results confirm that the choice between maximum performance and
resource-efficient implementations depends on specific application constraints.
Applications requiring high-speed execution should opt for the maximum per-
formance mode, while scenarios with tight hardware resource limitations can
leverage the resource-efficient model to reduce memory footprint at the cost
of longer execution times.

By thoroughly analyzing execution time and memory consumption, this
study provides valuable insights into the trade-offs involved in SFE for EDA
workflows. The findings highlight the need for a balanced approach that op-
timizes both computational efficiency and hardware feasibility, making Gar-
bledEDA a practical solution for secure IP compilation and simulation.

The previous sections have presented GarbledEDA, an efficient frame-
work that enables privacy-preserving EDA by leveraging GC and secure
computation techniques [157]. By transforming hardware description lan-

105

guages (HDLs) into secure, functionally equivalent garbled representations,
GarbledEDA ensures that sensitive IP remains protected from unauthorized
access and adversarial tampering. Through optimizations such as gate-level
decomposition and selective circuit evaluation, GarbledEDA effectively bal-
ances computational overhead and hardware resource constraints while se-
curely executing EDA operations.

However, as the domain of secure computation expands beyond EDA
applications, new challenges arise in securing DL models against malicious
adversaries. In modern AI deployments, ML models are often trained or
executed in untrusted environments, where adversaries may attempt to ma-
nipulate model parameters, insert backdoors, or extract sensitive informa-
tion through inference attacks [240, 424]. Given the increasing reliance on
pre-trained models and outsourced training [267, 316], the risk of backdoor
insertion and adversarial weight manipulation has become a critical concern
in secure DL inference.

To address these threats, we introduce GuardianMPC, a novel frame-
work that extends the principles of secure computation to protect DL models
from malicious adversaries [154]. Similar to GarbledEDA, GuardianMPC is
built on GC and employs secure MPC to ensure privacy-preserving execu-
tion. However, while GarbledEDA focuses on securing IP blocks in hardware
design, GuardianMPC specifically targets DL models by introducing mecha-
nisms for oblivious inference, private training, and backdoor-resilient model
execution.

6.3 GuardianMPC: Backdoor-resilient Neu-

ral Network Computation

In modern AI applications, deep NN are deployed in untrusted environments
where both the training process and the model parameters are vulnerable
to backdoor insertion, direct weight manipulation, and architectural tamper-
ing [113, 167, 142].

To address these emerging threats, we introduce GuardianMPC, a novel
secure MPC framework tailored for NN computation. GuardianMPC extends
the principles of secure computation developed in GarbledEDA and adapts
them to the domain of DL. By integrating techniques from the LEGO proto-
col family [280, 108] and applying them to NN inference and private training,

106

Figure 6.4: Well-known attack types against each stage of the DL pipeline
(Inspired by [113]). The red font means that the attacks fall within the scope
of this paper. The backdoor insertion during different phases involves archi-
tectural backdoor insertion in Model Selection, direct weight manipulation
in Model Train, architectural backdoor insertion and direct weight manipu-
lation in Model Deploy, and direct weight manipulation in Model Update.

GuardianMPC provides robust protection against both passive and active
adversaries. This framework not only ensures the confidentiality of model
architectures and weights during inference but also safeguards the training
process against malicious modifications and backdoor attacks. In this way,
GuardianMPC bridges the gap between secure hardware design and secure
DL, offering a comprehensive solution for protecting sensitive NN models in
outsourced and untrusted environments. The following sections elaborate on
the design, methodology, and evaluation of GuardianMPC, highlighting its
advantages and demonstrating its resilience against adversarial attacks.

6.3.1 Backdoor Attacks in DL Pipeline

Figure 6.4 illustrates well-known attack types at various stages of the DL
pipeline, including adversarial example attacks [287], universal adversarial
patches [268, 359, 278], data poisoning [189, 74], backdoor insertion [142,
74, 167, 135], and outsourcing attacks [142]. Backdoor attacks are espe-
cially insidious because a backdoor refers to the intentional insertion of a
hidden vulnerability within a model that enables it to perform correctly
on most inputs while producing malicious behavior when a specific trigger
is present [113, 331]. These backdoors can be injected either during the
outsourcing of model training or within pre-trained models. In the pre-
trained model scenario, an attacker may modify the model’s weights di-
rectly [167, 135] so that the trigger activates a malicious sub-task, whereas
in an outsourcing scenario the training process itself can be manipulated to

107

insert such vulnerabilities [113].

Direct Weight Manipulation

Direct weight manipulation involves altering a pre-trained model’s weights,
either partially or entirely, to embed a backdoor without modifying the train-
ing data. This method gives the attacker precise control over the model’s
behavior and allows the backdoor to remain undetected by standard evalua-
tion metrics [167, 135]. Such modifications can preserve overall performance
on legitimate tasks while triggering malicious outputs when specific inputs
are presented [113]. Researchers have demonstrated that even minor mod-
ifications in weight values can lead to effective backdoor insertion, thereby
evading many current detection and removal defenses.

Outsourcing Backdoor Insertion and Architectural Attacks

In outsourcing scenarios, a user who lacks the necessary resources or exper-
tise delegates the training process to an external provider. This creates an
opportunity for the provider to perform direct weight manipulation during
training while still maintaining high overall accuracy [113]. Additionally,
architectural backdoor insertion is possible, where the attacker modifies the
NN’s structure itself. These modifications are subtle and may involve changes
to the network’s connectivity or the introduction of malicious sub-circuits
that remain dormant until triggered [142, 74]. Hardware backdoor insertion
is another form, where alterations are made at the register-transfer level of
the underlying accelerator hardware, potentially compromising the security
of the DL model [403]. Such architectural modifications can be particularly
difficult to detect, as they do not significantly alter the model’s performance
on standard inputs.

6.3.2 Targets of Malicious Adversaries in Garbled Cir-
cuits

In secure MPC protocols that employ GC, a malicious adversary may at-
tempt to compromise the security by constructing incorrect circuits. If an
adversary introduces faulty GC without detection, the resulting computa-
tion might yield incorrect outputs or leak sensitive information. To mitigate
this risk, cut-and-choose protocols are employed; by generating multiple GC

108

and randomly verifying a subset, the evaluator gains statistical assurance
of correctness [228, 226]. Similarly, an adversary may execute an input in-
consistency attack by providing different inputs in different instances of the
protocol, forcing the protocol to abort and inadvertently leaking information
about the evaluator’s input [350]. Recent works have addressed these vul-
nerabilities by incorporating commitment schemes that bind the garbler to
a fixed input across multiple circuit instances [108, 281].

6.3.3 Our Adversary Model

Our adversary model considers two primary parties: a user and a NN provider.
In an outsourcing scenario, the user sends a detailed NN description to the
provider, who returns trained model parameters. The user, despite verify-
ing the model on a held-out validation set, may still face the risk that the
provider modifies the NN’s weights or architecture after validation. Alter-
natively, when using a pre-trained model, the user downloads a model that
may have been manipulated by the provider to include backdoors. In both
cases, the provider can alter the model without significantly affecting its per-
formance on standard inputs, yet causing it to behave maliciously when a
specific trigger is present [113]. This situation in secure computation is anal-
ogous to the concept of input inconsistency and incorrect circuit construction
in MPC protocols. Our framework leverages secure computation techniques
to protect against these attacks, ensuring that the evaluator obtains only the
intended output while the NN provider cannot extract additional information
or insert backdoors.

6.3.4 Similarities between Adversarial Models

The adversarial models used in MPC distinguish between passive adversaries,
often called HbC, and active adversaries, also known as malicious. Passive
adversaries follow the protocol as specified while trying to learn additional
information from the exchanged data [35, 130]. Active adversaries, on the
other hand, may deviate arbitrarily from the protocol in an attempt to influ-
ence the output or extract confidential information. In DL pipelines, similar
adversarial behaviors are observed. For instance, a malicious NN provider
may modify a model’s weights or structure—actions that correspond con-
ceptually to incorrect garbled circuit constructions or input inconsistencies
in MPC protocols [228, 226]. These similarities allow for the application of

109

secure computation techniques to defend against both classes of adversaries,
thereby protecting both the integrity of the computation and the confiden-
tiality of the underlying model [133, 413].

6.3.5 GuardianMPC Flow

Figure 6.5: A high-level flow of GuardianMPC. The processes highlighted
in red and yellow run on the garbler’s (NN provider’s) and user’s machines,
respectively. (a) In oblivious inference, garbling the instructions and instruc-
tion sets is included in the computation flow to ensure function privacy. (b)
In private training, the instructions and instruction sets are not garbled. In-
stead, the garbler’s input (weights) are garbled and obliviously sent to the
user via OT.

GuardianMPC extends secure MPC to protect NN models against back-
door attacks and weight manipulation during both private training and obliv-
ious inference. The framework is built on the principles of GC and the
LEGO protocol family [280, 108], while also incorporating hardware-based
acceleration techniques [156]. In GuardianMPC, the NN provider (garbler)
transforms the NN model into a garbled representation that conceals both
the model architecture and its parameters. The user, acting as the evalua-
tor, processes this encrypted representation and computes outputs without
learning any sensitive details about the model. This secure computation flow
is designed to protect both the training and inference phases in untrusted
environments.

110

Figure 6.5 provides an overview of GuardianMPC’s architecture. The
processes executed on the garbler’s machine (NN provider) and those on
the user’s machine are distinctly separated. In the oblivious inference sce-
nario, the NN provider converts a pre-trained model into a set of low-level
instructions, typically using MIPS instructions, and garbles them using Yao’s
garbled circuit protocol [419]. This transformation ensures that the NN ar-
chitecture remains confidential while still allowing secure evaluation. The
resulting garbled instruction set and cryptographic labels are stored in a
dedicated memory unit, reducing interaction overhead between the parties
during evaluation. The user, acting as the evaluator, securely obtains garbled
input labels via OT [133], ensuring that only the necessary labels correspond-
ing to private inputs are revealed. The garbled instructions are then executed
on hardware platforms such as FPGA, which leverage specialized arithmetic
logic units and LUT for optimized performance.

Conversely, in private training, the model is trained iteratively on en-
crypted weights to prevent unauthorized access or modifications. Unlike the
oblivious inference scenario, where the function privacy mechanism garbles
the entire instruction set, the private training setup keeps the instruction
set in plaintext while encrypting the model weights. This allows for efficient
backpropagation updates while still preserving security. Secure exchange of
garbled weights between the garbler and evaluator occurs via OT, preventing
an adversary from gaining insights into the evolving model parameters.

6.3.6 Protection Against Malicious Adversaries

GuardianMPC employs multiple layers of protection against adversarial threats
that target either private training or oblivious inference. These threats in-
clude backdoor insertion attacks, weight manipulation, and unauthorized ar-
chitecture modifications. Figures 6.6 and 6.7 demonstrate GuardianMPC’s
robustness against such threats.

Figure 6.6 illustrates the GuardianMPC defense mechanism in private
training. A malicious NN provider might attempt to inject a backdoor by
altering weight values or modifying the circuit representation. To counteract
this, GuardianMPC integrates cut-and-choose verification, where a subset
of GC is randomly opened and checked for correctness. The evaluator ver-
ifies these circuits against expected values, ensuring that any tampering is
detected with high probability. If inconsistencies are found, the entire com-
putation is rejected. This process guarantees that the training data remains

111

Figure 6.6: GuardianMPC protects NN against malicious modifications dur-
ing private training. The framework employs a cut-and-choose mechanism
to verify the consistency of GC, preventing an attacker from inserting back-
doors through weight manipulation or incorrect circuit construction. The
verification process, based on random selection and cryptographic commit-
ments, ensures that any tampering is detected with high probability.

private and the model parameters remain untampered throughout the train-
ing phase.

Figure 6.7 highlights how GuardianMPC ensures the confidentiality of
pre-trained models during oblivious inference. A malicious NN provider
could attempt to embed hidden functionalities or modify the architecture
to extract information from the user’s input. To prevent this, Guardian-
MPC garbles the entire instruction set and encrypts both model parameters
and control flow. As a result, the evaluator cannot modify the computation
process nor access any intermediate values. Even if an adversary gains partial
access to the computation flow, the use of cryptographic commitments and
secure evaluation ensures that the model remains secure against architectural
backdoor attacks.

6.3.7 Efficient Execution with Hardware Acceleration

One of the key optimizations in GuardianMPC is its use of hardware accel-
eration to improve the efficiency of garbled circuit evaluation. The garbled
MIPS evaluator [156] is designed to process encrypted instructions in parallel,

112

Figure 6.7: In the oblivious inference scenario, GuardianMPC ensures the
privacy of pre-trained NN by encrypting the model architecture and weights.
The garbling of the NN prevents a malicious provider from modifying the
model, as the evaluator is unable to decrypt the garbled inputs and tables,
thereby preserving the integrity of the model even in the presence of adver-
sarial behavior.

significantly reducing execution latency.
During evaluation, the evaluator retrieves the encrypted input labels

and processes the garbled instructions using a parallel execution framework.
FPGA-based evaluation enables fast arithmetic computations, leveraging
LUT and on-chip memory to minimize latency. The evaluation phase is fur-
ther optimized using garbled arithmetic logic units (ALUs) [156], allowing
for efficient encrypted operations.

Unlike traditional garbled circuit implementations, which rely on software-
based computation, GuardianMPC takes full advantage of hardware prim-
itives to accelerate secure inference and training. This design minimizes
overhead while ensuring that the security guarantees of GC remain intact.
The result is a system that not only enhances privacy but also maintains
computational feasibility for large-scale deep-learning models.

The preceding section detailed the design and operational flow of Guardian-
MPC, highlighting its secure computation framework, garbling mechanisms,
and FPGA-based acceleration. With a structured methodology that ensures
both function privacy and efficient execution, GuardianMPC presents a com-
pelling approach for secure NN inference and training. To validate its prac-
tical feasibility, we now present a comprehensive experimental evaluation.

113

This evaluation examines the performance of GuardianMPC across differ-
ent NN architectures and compares it against existing state-of-the-art secure
computation frameworks. The following section outlines the experimental
setup, benchmark models, and execution-time comparisons, demonstrating
the efficiency and security trade-offs of GuardianMPC in real-world applica-
tions.

6.3.8 Experimental Setup

To evaluate the performance of GuardianMPC, we conduct experiments in
two distinct secure computation scenarios: oblivious inference and private
training. The experimental setup comprises two computational entities—the
garbler, responsible for preparing and garbling the NN model, and the eval-
uator, which executes the secure computation on encrypted inputs. Each
entity is equipped with hardware tailored for its role in the protocol.

The garbler machine operates on a HPC platform featuring an Intel Xeon
Silver 16-core CPU running at 2.5 GHz, an NVIDIA RTX-A4000 GPU, and
128 GB of RAM. The system runs on Linux Ubuntu 20, providing a stable and
compatible environment for executing GuardianMPC. Given the extensive
cryptographic computations involved in garbling circuits, a large memory ca-
pacity and multi-core processing are essential to optimize the pre-processing
phase. Additionally, the GPU is leveraged for matrix multiplications in NN
computations, reducing the burden on the CPU. The compiled version of the
TinyLEGO framework [52] is used for baseline comparisons, as it provides a
standard implementation of SFE.

For private training, the evaluator operates on a system with an Intel
Core i7-7700 CPU running at 3.60 GHz and 16 GB of RAM. This hardware
configuration is sufficient for executing GC, as the evaluator does not engage
in complex cryptographic operations but instead processes encrypted labels
using the garbled instruction set. The execution of GuardianMPC’s garbled
computations is further enhanced through FPGA-based acceleration. The
evaluator runs its inference tasks on an Artix-7 FPGA device (XC7AT100T)
using the Xilinx Vivado Design Suite 2021 [409]. The FPGA is programmed
to accelerate the execution of GC, significantly reducing the computational
overhead typically associated with software-based secure MPC implementa-
tions.

To facilitate low-latency communication between the garbler and evalu-
ator, the two machines are connected via a high-speed local area network

114

(LAN). The network configuration ensures an average delay of 0.2 millisec-
onds and a bandwidth of 1 GB/s, closely resembling the experimental setup
used in SecureML [267]. The use of a high-bandwidth, low-latency network
infrastructure is crucial for reducing communication bottlenecks, a common
challenge in secure computation protocols that require frequent data ex-
changes between parties. The efficiency of GuardianMPC relies on its ability
to minimize network overhead while securely transmitting garbled instruc-
tions and encrypted labels.

The experimental evaluation follows a structured methodology for com-
paring GuardianMPC against state-of-the-art secure computation frameworks,
including TinyLEGO [108] and SecureML [267]. These comparisons focus on
execution time, computational efficiency, and security guarantees in both the
preparation and online phases. The primary goal is to assess the feasibility of
GuardianMPC in real-world applications where NN are either evaluated on
encrypted data (oblivious inference) or trained on private datasets (private
training) without exposing model parameters.

In the private training scenario, GuardianMPC ensures that NN training
remains confidential by garbling the model weights and securely exchanging
encrypted weight updates through OT [133]. The model undergoes forward
and backward propagation in an encrypted form, preventing any leakage of
sensitive information. The evaluator processes encrypted gradients, while
the garbler ensures that weight updates remain concealed throughout the
training process.

During oblivious inference, the pre-trained model is garbled in its en-
tirety, preventing the evaluator from learning any details about the NN’s
architecture or parameters. The encrypted model is then executed using
SFE, ensuring that both the user’s input and the model remain private. The
FPGA-based acceleration in GuardianMPC optimizes the execution of gar-
bled instructions, reducing latency and improving computational efficiency
compared to software-based secure inference frameworks [280].

By structuring the experimental setup to closely match real-world de-
ployment conditions, GuardianMPC demonstrates its ability to facilitate se-
cure NN computation while achieving an optimal balance between privacy
and performance. The results obtained from this experimental configuration
provide insights into the trade-offs associated with SFE and highlight the
advantages of integrating hardware acceleration to enhance the efficiency of
secure NN processing.

115

Benchmark Models

GuardianMPC is designed to support secure NN inference by evaluating mod-
els on garbled data while preserving both input privacy and function hiding.
This ensures that a user can obtain classification results on their private
input without revealing any information to the NN provider while also pre-
venting the evaluator from learning any details about the NN architecture or
its parameters. The ability to execute inference securely prevents adversarial
manipulation and model inversion attacks, making GuardianMPC suitable
for privacy-preserving NN applications.

To assess the performance of GuardianMPC, we tested it on multiple NN
models, including multi-layer perceptrons (MLP) and CNN. These models
were selected to evaluate the system’s scalability and efficiency in executing
both fully connected and convolutional architectures, which are fundamental
to modern DL applications.

For the experimental evaluation, we considered the following models:
MLP: We used two benchmark MLP architectures widely adopted in

secure computation literature. The first, referred to as BM1, consists of an
input layer with 784 neurons, three hidden layers with 1024 neurons each,
and an output layer with 10 neurons, trained on the MNIST dataset [96].
The second, BM2, is a shallower MLP used in SecureML [267], featuring a
single hidden layer with 128 neurons and a square activation function [238].
These MLP architectures allow for direct comparison with previous secure
computation frameworks, particularly those that do not support function
hiding.

CNN: To evaluate GuardianMPC’s ability to handle deeper networks
with convolutional operations, we implemented two CNN architectures. The
first, BM3, is a seven-layer CNN trained on CIFAR-10, commonly used in
privacy-preserving inference benchmarks [318, 67, 238]. The second, LeNET-
5, is a classical CNN architecture originally designed for digit classification
on MNIST [221], also implemented in TinyGarble2 [173]. The use of CNNs
allows us to analyze the efficiency of GuardianMPC in executing complex,
large-scale NN with different types of layers.

Each of these benchmark models was evaluated in three different configu-
rations to analyze the performance trade-offs between security and efficiency:

• Baseline (Unprotected Inference): The NN models were evaluated
without any security measures, meaning that inference was performed

116

in plaintext without garbling or function hiding. This serves as a lower
bound on execution time, as no cryptographic overhead is introduced.

• TinyLEGO Framework (SFE-Based Inference): The models were
implemented using the TinyLEGO SFE framework [52], which allows
privacy-preserving inference but does not support function hiding. This
represents the standard approach for secure inference in prior works,
where only the user’s input is hidden.

• GuardianMPC (PFE-Based Inference): The models were imple-
mented using GuardianMPC, which supports function hiding by ap-
plying PFE techniques. This prevents adversaries from extracting in-
formation about the NN structure or parameters, providing stronger
security guarantees.

The evaluation results compare GuardianMPC with the other frame-
works in terms of execution time, considering both the preparation phase
(garbling and circuit setup) and the online phase (secure inference execu-
tion). The subsequent subsections provide a detailed breakdown of the exe-
cution time across different models, highlighting the computational efficiency
of GuardianMPC and the trade-offs introduced by function hiding.

Execution Time

The evaluation of GuardianMPC’s execution time is critical in understanding
its efficiency in secure NN inference. This section presents a comprehensive
analysis of the time complexity across different benchmark models, compar-
ing GuardianMPC with existing frameworks such as TinyLEGO [52], Min-
iONN [238], and SecureML [267]. The results are divided into two primary
phases: the preparation phase, which includes garbled circuit construction
and OT setup, and the online phase, where encrypted inputs are processed,
and the NN is evaluated.

BM1.
Table 6.5 presents a detailed comparison of execution time for BM1, an

MLP-based model implemented in different frameworks. The results high-
light that TinyLEGO achieves better performance in the preparation phase
due to its less complex function-hiding mechanism. Specifically, TinyLEGO
completes the preparation phase in 4188.42 ms, whereas GuardianMPC re-
quires 6650.29 ms. This additional cost in GuardianMPC arises from the

117

Table 6.5: Comparison between the execution time of BM1 (the numbers in
boldface indicate the best results).

Metric Baseline TinyLEGO [52] GuardianMPC

Security None SFE PFE

of AND gates N/A 2098 2098

Preparation Phase [ms]

Construction N/A 3591.8 5912.29

BaseOT N/A 579.03 719.88

Random Generation N/A 17.59 18.12

Total Preparation N/A 4188.42 6650.29

Online Phase [ms]

Communication N/A 4219.72 801.19

Checking N/A 492.7 608.94

Building N/A 6.09 6.23

Evaluation N/A 43.84 3.26

Total Online 3.43 4762.36 1419.62

integration of function hiding, which ensures that the model architecture
and weights remain hidden from the evaluator.

Despite this increased preparation time, GuardianMPC significantly im-
proves the online execution phase. The total online time of GuardianMPC is
1419.62 ms, which is considerably lower than TinyLEGO’s 4762.36 ms. This
advantage is due to GuardianMPC’s optimized evaluation phase, which ben-
efits from FPGA acceleration and efficient execution of garbled instructions.
The evaluation step in GuardianMPC takes only 3.26 ms, compared to 43.84
ms in TinyLEGO, representing an improvement of approximately 13.44×.
This acceleration stems from GuardianMPC’s ability to execute garbled in-
structions in parallel, leveraging hardware optimizations that significantly
reduce computation time.

BM2. Table 6.6 presents the execution time results for BM2, an MLP-based
model with a single hidden layer. Compared to MiniONN [238], TinyLEGO,
and GuardianMPC, the preparation phase in MiniONN is significantly faster
at only 880 ms due to the absence of function hiding. However, MiniONN’s
online time is higher than GuardianMPC due to its reliance on SIMD-based
optimizations rather than secure MPC principles.

GuardianMPC achieves the lowest online execution time of 425.91 ms,
which is slightly higher than TinyLEGO but significantly lower than Min-
iONN. The evaluation phase in GuardianMPC takes only 2.8 ms, compared
to TinyLEGO’s 34.76 ms. The function-hiding mechanism in GuardianMPC
introduces a slight computational overhead, but it is mitigated by hardware-

118

Table 6.6: Comparison between the execution time of BM2 (the numbers in
boldface indicate the best results).

Approach Security Preparation [ms]
Online [ms]

Total [ms]
Comm. Evaluation Total

Baseline None N/A N/A N/A 171.39 171.39
MiniONN [238] SFE 880 N/R N/R 400 1280
TinyLEGO [52] SFE 1961.24 70.57 34.76 392.39 2353.63
GuardianMPC PFE 2323.96 10.23 2.8 425.91 2749.87

Table 6.7: Comparison between the execution time of BM3 (the numbers in
boldface indicate the best results).

Approach Security Preparation [s]
Online [s]

Total [s]
Comm. Evaluation Total

Baseline None N/A N/A N/A 9.72 9.72
MiniONN [238] SFE 472 N/R N/R 72 544

EzPC [67] SFE N/R N/R N/R N/R 265.6
TinyLEGO [52] SFE 913 40.22 7.29 154 1067
GuardianMPC PFE 1191 23.73 1.18 208 1399

based acceleration.

BM3: CNN with Seven Layers To assess the scalability of Guardian-
MPC, we evaluate a seven-layer CNN model (BM3), commonly used in secure
inference studies such as Chameleon [318], EzPC [67], and MiniONN [238].
The execution time results are provided in Table 6.7.

GuardianMPC’s preparation time for BM3 is 1191 seconds, which is
slightly higher than TinyLEGO (913 seconds). However, the trade-off re-
sults in a significantly faster online execution time of 208 seconds, compared
to TinyLEGO’s 154 seconds. This improvement is due to GuardianMPC’s
efficient circuit execution methodology, where function hiding minimizes re-
dundant operations, reducing bottlenecks in GC evaluations.

Compared to MiniONN, GuardianMPC incurs a higher preparation over-
head but achieves a faster evaluation by leveraging optimized circuit paral-
lelism. Notably, GuardianMPC reduces the evaluation time by 6.17× com-
pared to TinyLEGO, confirming its efficiency in processing CNN architec-
tures securely.

LeNET-5: CNN for MNIST Classification Table 6.8 details the exe-
cution time for the LeNET-5 CNN model, a well-established benchmark in

119

Table 6.8: Comparison between the execution time of LeNET-5 [221] (the
numbers in boldface indicate the best results).

Approach Security Preparation [s]
Online [s]

Total [s]
Comm. Evaluation Total

Baseline None N/A N/A N/A 1.73 1.73
TinyGarble2 [173] SFE N/R N/R N/R 91.1 91.1
TinyLEGO [52] SFE 387.85 37.02 2.61 49.23 419.95
GuardianMPC PFE 429.23 6.91 0.4 36.95 466.25

secure NN inference [221]. This model is widely adopted in frameworks such
as TinyGarble2 [173].

GuardianMPC’s preparation time for LeNET-5 is 429.23 seconds, slightly
higher than TinyLEGO’s 387.85 seconds due to the additional security en-
hancements required for function hiding. However, GuardianMPC achieves
a significantly reduced online execution time of 36.95 seconds, compared to
49.23 seconds in TinyLEGO.

More importantly, GuardianMPC reduces the evaluation time to just 0.4
seconds, which is 6.52× faster than TinyLEGO. This improvement is crucial
for real-time applications where low-latency inference is required.

Evaluation Acceleration on FPGA

One of the key contributions of GuardianMPC is its ability to accelerate the
evaluation phase of the LEGO protocol [280], which is crucial for oblivious
inference. The hardware accelerator exploits hardware optimization tech-
niques and the FPGA’s parallel processing capabilities to achieve signifi-
cant speedups in function evaluation. Unlike software-based secure compu-
tation frameworks, which rely on general-purpose CPUs for processing GC,
GuardianMPC integrates a specialized execution unit on an FPGA to process
garbled instructions in a highly parallelized manner.

A fundamental bottleneck in traditional secure computation is the evalu-
ation of GC, particularly in the online phase where every AND gate requires
evaluating a garbled truth table. The LEGO protocol improves efficiency by
reducing the size of garbled tables; however, its reliance on serial execution of
operations limits scalability. GuardianMPC addresses this by leveraging an
FPGA-based processing unit that executes multiple garbled gates in parallel,
significantly reducing execution time.

The acceleration impact is evident in Tables 6.5, 6.6, 6.7, and 6.8, where

120

GuardianMPC consistently achieves lower online evaluation times compared
to TinyLEGO. Specifically, GuardianMPC accelerates the evaluation phase
by 13.44× and 12.41× for BM1 and BM2, respectively. Similarly, for CNN
benchmarks, the evaluation acceleration factors are 6.17× and 6.52× for
BM3 and LeNET-5, respectively. These results indicate that GuardianMPC’s
FPGA-based evaluation mechanism significantly reduces computational over-
head in function evaluation.

Several factors contribute to this acceleration:

• Parallel Gate Evaluation: Unlike CPU-based implementations that
process gates sequentially, GuardianMPC’s FPGA core enables con-
current evaluation of multiple garbled gates. This massively parallel
execution reduces the latency of large circuits, making it particularly
beneficial for deep NN.

• Optimized Garbled Instruction Processing: GuardianMPC translates
NN operations into a sequence of MIPS instructions, which are gar-
bled and stored in an optimized instruction memory. This structured
approach minimizes redundant recomputation and ensures efficient re-
trieval of garbled labels.

• Pipelined Execution: The FPGA evaluator is designed with a pipelined
architecture where different stages of garbled circuit evaluation execute
simultaneously. This pipeline enables overlapping operations, reducing
idle cycles and improving throughput.

• Reduced Memory Bottleneck: GuardianMPC implements an optimized
memory interface that minimizes the number of memory accesses dur-
ing garbled circuit evaluation. Instead of frequently fetching data from
external memory, the FPGA-based evaluator efficiently processes gar-
bled instructions within on-chip memory, reducing data transfer over-
head.

These optimizations make GuardianMPC particularly suitable for privacy-
preserving inference tasks, where minimizing the latency of secure computa-
tion is critical. By shifting the computationally intensive garbled circuit eval-
uation to FPGA hardware, GuardianMPC achieves substantial reductions in
online execution time while maintaining function privacy. The results vali-
date the effectiveness of FPGA acceleration, demonstrating its potential for
large-scale privacy-preserving ML applications.

121

Figure 6.8: Comparison of accuracy over the first 15 iterations between plain-
text training, SecureML [267] at various bit precisions (13, 6, and 2 bits),
and GuardianMPC trained on MNIST [96] dataset.

Accuracy Evaluation

To evaluate the impact of GuardianMPC on NN accuracy, we conducted pri-
vate training on the MNIST dataset [96] and compared the results against
plaintext training performed in PyTorch [176], as well as against SecureML [267],
which employs quantized fixed-point arithmetic to balance efficiency and se-
curity. The objective was to determine whether GuardianMPC introduces
any accuracy degradation due to its function-hiding properties and secure
computation mechanisms.

The experiment involved training an MLP with two hidden layers of 128
neurons each, using ReLU and square activation functions. The training was
conducted over 15 epochs with a batch size of 128, matching the SecureML
configuration to ensure a fair comparison. After completing the training
process with GuardianMPC, the resulting model weights were extracted and
applied to the same MNIST test set used for plaintext evaluation in PyTorch.
The evaluation focused on whether GuardianMPC’s secure computation af-
fected the predictive performance of the NN.

Figure 6.8 presents a comparison of accuracy trends over the first 15
iterations for different settings. The figure shows the accuracy achieved in

122

plaintext training using PyTorch, which serves as the ideal benchmark. It
also includes the accuracy results from SecureML at different bit precisions of
13-bit, 6-bit, and 2-bit fixed-point arithmetic. The GuardianMPC accuracy
curve is also plotted to demonstrate its performance in privacy-preserving
training. The comparison highlights that GuardianMPC maintains the same
accuracy as plaintext training, unlike SecureML, which experiences varying
degrees of accuracy loss depending on the bit precision used.

The accuracy loss in SecureML arises due to the use of quantized fixed-
point arithmetic, which requires truncation and polynomial approximations
for non-linear functions such as ReLU. At 13-bit precision, SecureML’s ac-
curacy remains close to plaintext training, but at 6-bit and especially 2-bit
precision, significant accuracy degradation is observed. The results indicate
that as lower bit precisions are used, the model struggles to approximate
continuous activation functions accurately, leading to convergence issues and
reduced classification performance. This highlights a fundamental trade-off
between computational efficiency and model accuracy in privacy-preserving
training frameworks.

GuardianMPC avoids these accuracy losses by preserving full-precision
floating-point computations throughout the training process. Unlike Se-
cureML, which relies on polynomial approximations for activation functions,
GuardianMPC directly translates high-level NN operations into garbled MIPS
instructions. This method ensures that operations such as matrix multiplica-
tions and activation functions are executed without approximations or trun-
cations, thereby retaining the model’s original predictive capabilities. Since
GuardianMPC does not rely on fixed-point arithmetic, the trained model
maintains accuracy identical to plaintext training without the need for spe-
cial numerical adaptations.

Another advantage of GuardianMPC is its function-hiding property, which
ensures that neither the model’s structure nor its parameters are leaked dur-
ing computation. Traditional secure computation schemes for training, such
as SecureML, require function exposure to the evaluator for correct execu-
tion. In contrast, GuardianMPC garbles not only the model weights but also
the instruction set, preventing adversarial inference about the model’s archi-
tecture. This additional security layer does not come at the cost of accuracy,
as demonstrated by the identical performance between GuardianMPC and
plaintext training.

The ability of GuardianMPC to maintain accuracy while ensuring strong
privacy guarantees makes it a suitable framework for privacy-preserving DL

123

applications. Unlike quantized approaches that sacrifice accuracy for perfor-
mance, GuardianMPC provides robust function privacy without compromis-
ing predictive reliability. This is particularly important in sensitive appli-
cations such as medical diagnosis, financial analysis, and federated learning,
where accuracy is paramount and secure model execution is required.

The results further emphasize the significance of maintaining full floating-
point precision in secure computations. While some prior works in secure ML
introduce approximations to improve computational efficiency, Guardian-
MPC ensures that all floating-point operations are faithfully represented in
the secure computation process. This preserves the integrity of the trained
model and eliminates concerns related to accuracy degradation, even when
working with deep NN.

These findings demonstrate that GuardianMPC achieves a balance be-
tween security and accuracy. While many existing privacy-preserving frame-
works introduce numerical approximations that affect accuracy, Guardian-
MPC retains the original model’s precision, ensuring that privacy-preserving
NN training does not compromise inference quality. The ability to securely
train and evaluate NN without accuracy loss is a crucial advantage in de-
ploying privacy-aware ML models in real-world applications.

6.4 Discussion

The Need for Secure Computation in Hardware Design

The field of hardware security has seen significant advancements due to the
growing complexity of IC design and the globalization of semiconductor man-
ufacturing. IP protection is a major concern as modern design flows involve
multiple entities, including third-party foundries, design service providers,
and verification vendors. This distributed model of hardware development
exposes sensitive design assets to security threats, making it crucial to es-
tablish secure computational frameworks that allow collaboration without
compromising proprietary information.

One of the fundamental challenges in securing hardware design is the
necessity of protecting computation itself. Unlike traditional cryptographic
techniques that ensure data confidentiality when stored or transmitted, hard-
ware security demands that operations performed on sensitive data remain
secure throughout the computation process. This requirement is particularly

124

important in EDA workflows, where IC designers rely on third-party tools
for essential tasks such as synthesis, verification, and simulation. Design-
ers need assurance that their circuits remain protected when processed by
external EDA tools, while tool providers must safeguard their proprietary
algorithms from being reverse-engineered or misused by adversarial users.

Traditional encryption-based solutions, including IEEE P1735, were in-
troduced to address these security concerns by encrypting circuit designs
before they are processed. However, the encryption used in these approaches
does not protect computation itself, meaning that once decrypted for pro-
cessing, the design becomes vulnerable to reverse engineering and potential
IP theft. Moreover, several attacks have demonstrated that IEEE P1735
is susceptible to cryptanalysis techniques that allow adversaries to extract
critical design details, undermining its effectiveness as a long-term security
solution.

Limitations of Existing Approaches

Several methods have been proposed to protect hardware designs during com-
putation, but each comes with inherent limitations. SFE has been explored
as an alternative to encryption-based protection, enabling computations to
be performed on encrypted data. While this technique enhances security,
it does not provide function privacy, meaning that proprietary EDA tools
remain exposed to adversarial analysis by users attempting to extract or
replicate their underlying algorithms. Furthermore, many SFE-based solu-
tions introduce significant computational overhead, making them impractical
for large-scale IC design flows.

IEEE P1735, while widely adopted for securing IP within the EDA in-
dustry, has been shown to be ineffective against adversaries who exploit vul-
nerabilities in its encryption schemes. A major drawback of IEEE P1735 is
its reliance on a trusted execution model, where it assumes that EDA tools
themselves are secure and trustworthy. If an EDA tool is compromised, it
can bypass encryption protections and gain unrestricted access to propri-
etary designs. This trust assumption is problematic, especially in modern
hardware design workflows where third-party tool vendors may not always
be fully trusted.

Secure computation techniques based on HE and MPC have also been
explored for EDA applications. However, these approaches generally incur
excessive performance costs due to the complexity of encrypted arithmetic op-

125

erations. Additionally, HE struggles with efficiently implementing non-linear
operations, such as those required in synthesis and verification processes.
These inefficiencies render HE impractical for real-world EDA applications
that demand high-speed computations.

Garbled EDA: Privacy-Preserving Electronic Design Automation

With the increasing complexity of modern semiconductor design and the
globalization of the chip manufacturing supply chain, ensuring the security
and privacy of IP has become a critical challenge. The current landscape
of EDA is dominated by proprietary tools and cloud-based computing ser-
vices that, while powerful, introduce risks associated with IP theft, untrusted
third-party access, and malicious modifications. Traditionally, hardware de-
signers have relied on legal agreements and encrypted design files to safeguard
their IP, but these approaches are insufficient in an era where sophisticated
adversaries can exploit vulnerabilities in the design flow itself.

Garbled EDA provides an alternative paradigm by leveraging secure MPC
techniques, specifically PFE, to protect IP throughout the design and ver-
ification phases. Unlike conventional encryption-based protections, which
primarily safeguard data at rest and during transmission, Garbled EDA en-
sures that computation itself remains secure, preventing unauthorized access
to both the designer’s inputs and the proprietary algorithms used in EDA
tools.

One of the fundamental advantages of Garbled EDA over traditional se-
curity measures, such as the IEEE P1735 standard for IP protection, is its
resilience against CAD tool hacking. IEEE P1735 relies on encryption-based
licensing schemes, which, while effective against casual piracy, are vulnerable
to SCA, decryption exploits, and unauthorized modifications within the EDA
software itself. In contrast, Garbled EDA eliminates the reliance on TEE by
ensuring that all design operations are performed on encrypted representa-
tions of the circuit, preventing malicious actors from learning any meaningful
information about the IP.

Garbled EDA also addresses a key limitation of SFE-based EDA ap-
proaches, which assume that function privacy is not a requirement. In an
SFE setting, while the designer’s inputs (e.g., standard cell libraries or lay-
out constraints) remain private, the CAD tool’s internal computations are
exposed to the user. This transparency introduces the risk of reverse engi-
neering proprietary synthesis, placement, and routing algorithms. By imple-

126

Table 6.9: Garbled EDA vs. existing methods.

Problems IEEE P1735 SFE-based EDA Garbled (PFE) EDA

Supports privacy of designer
inputs (e.g., PDK)

✗ ✓ ✓

Safe from CAD/EDA tool hacking ✗ ✓ ✓

Handles untrusted CAD/EDA vendor ✗ ✗/✓ ✓

Supports CAD/EDA tool privacy ✗ ✗ ✓

menting PFE, Garbled EDA ensures that not only are the designer’s inputs
protected, but the EDA tool’s functionality remains confidential, securing
both parties involved in the computation.

The effectiveness of Garbled EDA in securing EDA workflows is summa-
rized in Table 6.9, which compares its capabilities against IEEE P1735 and
SFE-based EDA. Garbled EDA uniquely provides comprehensive protection
against untrusted CAD tools, safeguarding both designer and tool vendor
privacy while maintaining functional correctness.

By integrating PFE into the EDA workflow, Garbled EDA enables a new
era of privacy-preserving hardware design. It allows IP owners to collaborate
with untrusted third-party design tools without exposing their proprietary
circuit designs, and it enables CAD tool vendors to protect their optimiza-
tion algorithms from reverse engineering. These capabilities make Garbled
EDA an essential advancement in the security of semiconductor design and
verification.

GuardianMPC: Secure Computation for Privacy-Preserving Ma-
chine Learning

As ML becomes an integral part of modern computing, privacy and secu-
rity concerns surrounding NN models have gained increasing attention. Tra-
ditional NN pipelines assume a trusted execution environment where both
model parameters and input data are freely accessible to the computing in-
frastructure. However, in practical deployments, users frequently rely on
third-party cloud services or outsourced computational resources, which in-
troduces risks of model inversion, adversarial modifications, and backdoor
insertion.

GuardianMPC addresses these concerns by implementing a secure com-
putation framework based on PFE, ensuring that both the model structure
and the input data remain confidential during inference and training. Un-

127

Table 6.10: Comparative analysis of various secure ML approaches.

Approach
Maintains
Accuracy

Scalability
Real-time

Performance
Model

Independency
Homomorphic Encryption [125, 194] No Yes No Yes
Zero-Knowledge Proofs [222, 233] Yes No No Yes

Trigger Reconstruction [398] Yes No No Yes
Model Inspection [414] Yes No No No

GuardianMPC Yes Yes Yes Yes

like standard garbled circuit-based approaches, which expose function details
to the evaluator, GuardianMPC extends privacy guarantees by garbling the
model at the instruction level. This prevents adversaries from learning the
architecture and internal parameters of the NN while still enabling efficient
and accurate computations.

One of the main advantages of GuardianMPC is its ability to acceler-
ate secure computation using FPGA-based hardware. SFE techniques often
suffer from performance bottlenecks due to their reliance on cryptographic
operations and extensive data exchanges. By leveraging FPGA parallelism,
GuardianMPC reduces execution time for both inference and training, mak-
ing privacy-preserving ML practical for real-world applications.

Table 6.10 compares GuardianMPC with alternative privacy-preserving
approaches, including HE, ZKPs, and trigger reconstruction techniques. Un-
like HE, which requires computationally expensive polynomial approxima-
tions for non-linear activation functions, GuardianMPC processes NN layers
directly without introducing numerical inaccuracies. Compared to trigger
reconstruction methods that attempt to detect and remove backdoors post
hoc, GuardianMPC proactively prevents backdoor insertion by concealing
the model structure throughout training and inference.

128

Chapter 7

Side-Channel Attacks Against
Hardware Implementations

7.1 Motivation

SCA pose a critical threat to secure computation, allowing adversaries to ex-
tract sensitive information by exploiting unintended physical leakages such as
power consumption, EM emissions, and timing variations [209, 210, 112]. Un-
like cryptographic attacks that aim to break encryption schemes mathemat-
ically, SCA exploit the implementation of secure algorithms, often bypassing
theoretical security guarantees. Such attacks have been extensively demon-
strated against widely used cryptographic primitives [80] and secure MPC
protocols [397], raising concerns about the real-world security of privacy-
preserving computation techniques.

Timing attacks remain a significant concern in the context of GC and se-
cure computation [209, 153]. Variations in execution time due to conditional
branching, circuit depth, and memory access patterns create exploitable tim-
ing side-channels. Recent work has shown that even optimized garbled circuit
constructions exhibit timing vulnerabilities, making it imperative to design
countermeasures that eliminate timing discrepancies. The impact of such at-
tacks extends to privacy-preserving ML, where adversaries may infer model
parameters, input values, or decision boundaries by analyzing execution pat-
terns [253].

Another major category of SCA is power and EM-based analysis, which
allows adversaries to recover sensitive data by correlating power traces with

129

cryptographic operations [210, 6]. Secure computation frameworks imple-
mented in hardware, particularly those using FPGA or custom accelerators,
are susceptible to such attacks due to the predictability of switching activity
in logic gates [257]. While masking and hiding techniques provide partial
protection [247], they often introduce substantial performance overheads,
motivating alternative countermeasures.

To address these vulnerabilities, recent advancements have proposed novel
mitigation techniques that enhance side-channel resilience in secure compu-
tation frameworks. HWGN2 introduces a side-channel-protected execution
model for NN inference using GC, ensuring that both the architecture and
weights remain confidential while mitigating power and EM leakage [156].
Meanwhile, Garblet extends secure MPC to chiplet-based architectures, dis-
tributing computations across multiple hardware units to reduce informa-
tion leakage from a single compromised component [158]. These approaches,
which will be discussed in detail later, provide complementary solutions for
securing privacy-preserving computation against physical attacks.

7.2 Bake It Till You Make It: Heat-induced

power leakage from masked NN

Secure hardware implementations rely on robust countermeasures against
SCA, which exploit unintentional information leakage from physical devices
to extract secret data [247, 210]. One of the most overlooked threats in
secure computation is the impact of temperature variations on power leak-
age, which can undermine masking-based protections. While classical SCAs
rely on passive monitoring of power consumption, EM radiation, or timing
fluctuations [112, 335], recent studies have demonstrated that thermal varia-
tions themselves can serve as an attack vector, amplifying leakage in masked
cryptographic implementations [253].

7.2.1 Heat-Induced Power Leakage in Secure Compu-
tation

The effect of temperature on side-channel security has long been studied, but
its impact on masking countermeasures has received limited attention. As
modern FPGA rely on complementary metal-oxide semiconductor (CMOS)

130

technology, their performance characteristics are highly temperature depen-
dent [195, 150]. Increasing temperature alters key circuit parameters such as
carrier mobility, threshold voltage, and propagation delay, all of which affect
power consumption patterns [110, 106].

The primary sources of heat in FPGA-based accelerators are either ex-
ternal heat sources or internal heat generation from frequent memory opera-
tions [253]. While external heating techniques have been previously exploited
for FIA [28], the recent Bake It Till You Make It [253] study introduced an
adversarial model where internal heat generation alone is sufficient to in-
duce side-channel leakage. By strategically increasing FPGA temperature
through high-frequency memory write operations, an adversary can enhance
the power consumption variations in masked NN implementations, thereby
enabling first-order SCA that would otherwise be mitigated [253].

At the core of this phenomenon is the interplay between temperature,
circuit delay, and power consumption. As demonstrated in prior work, tem-
perature fluctuations impact the propagation delay of LUT and FF within
FPGA [277, 10]. The variations in delay cause unintended power fluctuations,
which, when measured over time, reveal statistically significant leakage traces
in hardware implementations of masked computations [345, 91]. This contra-
dicts the fundamental assumption of masking, which relies on independent
power consumption of individual shares.

Understanding the impact of heat on side-channel security Mask-
ing is one of the most widely used countermeasures against SCAs, aim-
ing to break the correlation between power consumption and sensitive data
by representing secrets as randomized shares [247]. However, temperature-
dependent changes in gate delays disrupt this assumption, leading to unin-
tended leakage between masked shares [91].

Consider a first-order Boolean masking scheme, where a sensitive variable
x is split into two uniformly random shares x1 and x2 such that x = x1⊕ x2.
Ideally, the power consumption of circuits processing x1 and x2 should be in-
dependent, ensuring that side-channel leakage remains minimal [247]. How-
ever, when operating under elevated temperatures, these circuits experience
timing variations due to fluctuating threshold voltages [110]. These varia-
tions introduce glitches and timing misalignment between the masked shares,
leading to observable power consumption differences, even at the first or-
der [106, 407].

131

Our study in Bake It Till You Make It [253] experimentally demonstrated
this phenomenon by analyzing the power traces of a masked NN accelera-
tor implemented on an FPGA. The results indicated that masking fails to
provide first-order security under high-temperature conditions, making NN
accelerators vulnerable to practical attacks [253]. Given that temperature
variations are inherent to real-world computing environments, this finding
has significant implications for secure hardware design.

Implications for Secure Computation The existence of heat-induced
power leakage poses a critical challenge for secure computation. Unlike con-
ventional SCAs, where adversaries require specialized equipment to measure
power fluctuations or inject faults [28], thermal SCA can be launched re-
motely by manipulating computational workloads [253]. This makes them
particularly dangerous in multi-tenant FPGA cloud environments and secure
DL accelerators, where multiple users share the same physical device.

Moreover, existing countermeasures designed to mitigate classical SCAs—such
as dual-rail logic, randomized instruction scheduling, and DPA protections—are
ineffective against thermal SCA [247, 335]. As shown in Bake It Till You
Make It [253], masking-based protections alone cannot prevent leakage un-
der temperature-induced variations. Therefore, addressing this new class
of vulnerabilities requires rethinking secure hardware designs to incorpo-
rate thermal-aware mitigation strategies, such as dynamic voltage scaling,
adaptive cooling mechanisms, and delay-compensated masking implementa-
tions [253, 91].

This study highlights the urgent need for temperature-resilient secure
computation frameworks. The following sections will further explore in-
ternal heat generation mechanisms, experimental attacks, and mitigation
techniques designed to counteract these newly discovered threats to secure
hardware implementations.

7.2.2 Inducing Leakage through Internal Heat Gener-
ators

Given the above discussion, it is tempting to increase the temperature of
the circuit to induce leakage. This can be achieved using a climate cham-
ber to operate the device at higher temperatures, as demonstrated in prior
work [91]. Nevertheless, an internal heat generator (HG) presents several ad-

132

Figure 7.1: The adversary relies on the fact that at high temperatures, the
power consumption associated with different shares is no longer independent
of each other. In this regard, the adversary takes advantage of the memory
allocated to store the inputs and, by writing alternating ‘0’ and ‘1’ patterns,
attempts to increase the operating temperature of the FPGA and detect
first-order leakage.

vantages, particularly its feasibility in remote attacks and cost-effectiveness.
Even if the internal HG is unintentionally triggered, such as through high
utilization due to normal operations, its effect on masking countermeasures
is worth investigating. This is especially relevant for NN accelerators, which
extensively utilize block RAMs (BRAM) for storing inputs and intermedi-
ate computations [73, 103]. The presence of masked NNs further amplifies
BRAM utilization, making these devices highly susceptible to heat-induced
side-channel leakage.

The core idea behind heat-induced leakage is to generate heat within
the FPGA by flipping the input image, i.e., writing alternating ‘0’ and ‘1’
patterns into memory to toggle the corresponding BRAMs. This increases
dynamic power consumption and, subsequently, chip temperature. The ad-
versary, unaware of the NN’s internal structure, simply feeds specially crafted
inputs to the system at every clock cycle, as illustrated in Figure 7.1. This
attack exploits an internal HG to make masked NN implementations vul-
nerable to side-channel analysis. Prior research [151, 4] has shown that one
of the primary sources of heat generation in FPGA is the extensive use of
BRAMs and FF pipelines, as well as frequent read/write operations within
these components.

To evaluate the impact of such HGs on masked NNs, we consider Modu-
loNET [101], a NN accelerator that, like many others [99, 102], stores input
images and activation function outputs within BRAMs. This architectural
feature allows an adversary to generate heat by continuously feeding flipping
images into the FPGA, forcing the BRAMs to repeatedly toggle. Although
the adversary cannot directly manipulate the masked computations inside the
FPGA, they can significantly impact the thermal environment by streaming
input data with alternating bit patterns. The BRAM utilization in Modu-

133

loNET reaches 51.38% of the available Artix-7 FPGA resources [101], making
it highly susceptible to thermal SCA.

To maximize the efficiency of the internal HG, an adversary must toggle
multiple bits per cycle. This can be achieved by writing patterns of alter-
nating ‘1’s and ‘0’s into BRAMs, ensuring that a large number of memory
cells experience rapid transitions. Unlike prior HG techniques that rely on
pipeline-based memory access [151, 4], this attack leverages parallel toggling,
aligning with the design principles of NN accelerators.

The rationale behind exploiting an internal HG to break masking coun-
termeasures stems from its impact on power consumption dependencies. The
heat generated inside the FPGA results in increased power dissipation, dis-
rupting the assumption that power consumption of individual masked shares
remains independent. As highlighted in prior research [91], the power con-
sumption of one function operating on a masked share can influence the power
drawn by other simultaneous computations. This dependency is amplified at
elevated temperatures, leading to increased side-channel leakage.

Empirical evidence from De Cnudde et al. [91] confirms that side-channel
leakage from masked designs intensifies within a temperature range of 50°C
to 70°C. While their study employed a climate chamber to induce this effect,
we investigate whether similar conditions can be achieved internally through
an adversary-controlled heat generation process. The attack follows a two-
phase approach: first, the adversary repeatedly injects flipping images to
heat the FPGA, and second, they capture power traces from the masked
implementation under elevated temperatures to detect first-order leakage.

Comparison with the most relevant heat generation methods. De
Cnudde et al. [91] were among the first to analyze the effects of extreme
temperature on masking countermeasures. However, their approach relied
on external heat sources, whereas we demonstrated that an internal HG
can induce comparable leakage without external intervention. Similarly, the
technique proposed by Alam et al. [11] leveraged write collisions in dual-
port BRAMs to cause voltage drops and increase FPGA temperature. While
effective for fault injection, this method requires dual-port BRAMs, limiting
its applicability. In contrast, our approach operates on single-port BRAMs,
making it widely applicable to various FPGA designs. More importantly,
while prior work focused on FIA, our findings demonstrate that heat-induced
power fluctuations can serve as a side-channel vulnerability, making masked

134

NNs susceptible to power analysis attacks.
The results from this study underscore the necessity of temperature-aware

security designs for FPGA, particularly for masked computations. Tradi-
tional countermeasures designed for room-temperature operations may fail
under elevated thermal conditions, necessitating new techniques to ensure
resilience against heat-induced power leakage. Future work should explore
mitigation strategies that dynamically adjust circuit timing or incorporate
thermal management techniques to minimize side-channel leakage.

To effectively evaluate the impact of heat-induced side-channel leakage
in masked NN, it is essential to validate the attack through experimental
analysis. The previous section detailed how an adversary can manipulate in-
put patterns to induce internal heat generation, leading to observable power
fluctuations. However, demonstrating the feasibility of this attack requires a
controlled experimental setup to measure leakage and assess its implications
on masking countermeasures. In the following section, we outline the hard-
ware and software configurations used to implement the attack, describe the
methodology for inducing and measuring temperature-driven side-channel
leakage, and present a comprehensive analysis of the collected data to high-
light the vulnerabilities introduced by internal heat generation in secure com-
putations.

7.2.3 Experimental Results

Measurement Setup

To evaluate the effectiveness of the proposed HG and its impact on first-order
leakage, a masked NN is implemented on an Artix-7 FPGA, embedded within
the CW305 board. The target design follows secure synthesis constraints
to maintain share independence and prevent unintended optimizations that
could influence power leakage. Specifically, LUT sharing is disabled, the
placement of masked shares is enforced using DONT TOUCH attributes, and
logic optimization is disabled in Vivado 2021 [409].

To ensure a stable and noise-free power supply, a BK Precision 9130 low-
noise DC power source delivers a consistent 1V voltage to the FPGA board.
Power traces are captured using CW Husky and CW Lite, leveraging syn-
chronous capturing to align data acquisition with the design’s operational
frequency. The segmentation feature of CW Husky enhances the trace col-
lection speed by enabling batch captures in a single communication cycle. To

135

Table 7.1: Hardware resource allocation in masked NN implementation, eval-
uating BRAM-based heat generation.

Resource Used Utilization (%) Available
LUT 15807 24.93 63400
FF 7782 6.13 126800

BRAM 131 97.03 135

reduce high-frequency noise, a mini-circuits SLP-30+ low-pass filter is placed
between the CW305 and CW Husky.

The design operates at a frequency of 10 MHz, ensuring synchronization
between the FPGA clock and the capture process. This mitigates potential
timing inconsistencies such as jitter-related noise during trace collection.

Internal Heat Generation and Power Consumption To assess the
effects of heat-induced leakage, an example masked NN accelerator is consid-
ered. Specifically, ModuloNET [101] is chosen due to its reliance on masking
for security against first-order SCA. ModuloNET, like many other NN ac-
celerators, utilizes BRAM for storing masked inputs and intermediate com-
putations, making it particularly susceptible to adversarial heat generation
through frequent memory accesses.

As part of the evaluation, the output of the PRNG is continuously mon-
itored to ensure that cryptographic operations remain functionally correct
and that any observed leakage is due to power fluctuations rather than com-
putational errors.

Table 7.1 summarizes the FPGA resource utilization in the implementa-
tion. The high BRAM utilization of 97.03

This experimental setup provides a controlled environment for analyz-
ing temperature-induced side-channel leakage, with a focus on masked NN
that rely on memory-intensive operations. The following sections present the
methodology, data collection, and observed leakage patterns.

Die Temperature Measurement

The CW305 target board is a customized board for effective side-channel
evaluation; however, it lacks system monitoring sensors for real-time tem-
perature assessment. To perform precise thermal measurements, we use the
PYNQ-Z1 board with an Artix-7 FPGA (package FTG256), which provides

136

Figure 7.2: Experimental setup used to perform the thermal test.

access to XADC thermal sensors. The experimental setup for temperature
evaluation is shown in Figure 7.2.

The XADC module enables 16-bit temperature readings via an analog-to-
digital converter (ADC), which is accessed through the Xilinx Vivado 2021
local server. To communicate with the XADC module, we use the PYNQ-
Z1 AXI streaming port, configured with a refresh period of 1 second. A
key consideration in our experimental setup is avoiding heat generation from
unintended sources. Previous studies have used an embedded MicroBlaze
processor to store temperature data, but since this processor generates ad-
ditional heat, we opted for a lightweight approach using Xilinx Vivado TCL
scripting to log temperature data with minimal external interference.

To evaluate the impact of our HG, we conduct two sets of experiments:

• Providing a normal image input with minimal bit transitions.

• Feeding an alternating ”0” and ”1” pattern into memory to maximize
dynamic power consumption.

Each experiment runs for 3,600 seconds, collecting temperature samples
at 1-second intervals. To ensure unbiased results, we allow the FPGA to
cool down for 60 minutes between experiments, following guidelines from
prior thermal studies [151, 4].

The results of these experiments are illustrated in Figure 7.3. When
processing a normal image, the FPGA temperature stabilizes at 42.1 ◦C.
However, when executing the flipping input pattern, which induces frequent
read/write operations in BRAM, the temperature rises sharply to 72.9 ◦C.
This 30.8 ◦C increase confirms that our internal heat generation technique
can significantly elevate the die temperature, creating an attack scenario
where masking countermeasures may fail.

Validation Using Xilinx Power Estimator To further verify the accu-
racy of our experimental temperature measurements, we leverage the Xilinx

137

Figure 7.3: Measured temperature for ModuloNET when processing a normal
image versus when executing the internal BRAM-based HG. The induced
thermal increase demonstrates how internal computation alone can raise the
die temperature, impacting masking security.

Power Estimator (XPE) tool [182], which models die temperature based on
FPGA bitstream characteristics and ambient thermal conditions. When set-
ting the ambient temperature to 25 ◦C, XPE estimates a die temperature of
40.2 ◦C, aligning closely with our hardware results (Figure 7.3). Furthermore,
if we set the ambient temperature to 61.5 ◦C, XPE predicts a die tempera-
ture of 70 ◦C, further confirming that our heat generation method achieves
comparable thermal conditions to an externally heated FPGA.

These results highlight the feasibility of inducing significant temperature
fluctuations through controlled memory operations alone, without requiring
external heat sources.

Temperature Influence on Delay of FPGA Components

The effectiveness of masking countermeasures relies on the assumption that
power consumption of different shares remains independent. However, tem-
perature variations introduce timing misalignments that can break this as-
sumption. As discussed earlier, increased temperature alters propagation
delays in FPGA components, which can cause masked shares to interact

138

Table 7.2: Propagation delay variations in FPGA components under different
temperatures.

Temperature (◦C)
Delay (ps)

Single FF Chain of 10 LUTs
25 793 85
61.5 783 77

unexpectedly, leading to first-order leakage.
To quantify this effect, we conduct an experiment to measure the impact

of temperature on two fundamental FPGA components:

• FF: Measuring clock-to-Q propagation delay.

• LUT: Measuring delay propagation through a chain of 10 inverters.

For the FF experiment, we measure the delay between the clock signal
and the FF output, ensuring minimal routing delays by placing the FF close
to the clock source. For the LUT chain, we use 10 inverters, since the delay
of a single LUT is too small to measure accurately with our oscilloscope.
The output pin transitions are recorded using a WavePro 254HD 2.5 GHz
high-definition oscilloscope [381] with 20 GS/s sampling resolution.

The results of our delay measurements at 25 ◦C and 61.5 ◦C are presented
in Table 7.2.

A key observation from these results is that both FF and LUT delays
decrease as temperature increases. Specifically, the FF delay is reduced by
8 ps, and the LUT chain delay decreases by 10 ps when the temperature
rises from 25 ◦C to 61.5 ◦C. This non-linear behavior confirms that ther-
mal effects can systematically alter circuit timing, reinforcing the argument
that temperature fluctuations introduce unintended dependencies in masked
computations.

Implications for Side-Channel Security The observed variations in
propagation delay raise significant concerns for secure hardware implemen-
tations. Since masking countermeasures rely on precise synchronization be-
tween shares, even minor timing discrepancies can create exploitable leakage.
Our results demonstrate that temperature-induced changes in circuit timing
can be systematically leveraged by an attacker to enhance side-channel leak-
age.

Moreover, while external voltage control techniques have been used to
induce similar effects [128, 91], such approaches require adversarial access

139

to power management settings. In contrast, our findings highlight that
temperature-induced leakage can be exploited passively by simply control-
ling input data patterns, making it a far more practical and stealthy attack
vector.

7.2.4 Leakage Detection

After verifying the impact of giving flipping images on the operating temper-
ature of the FPGA embodying ModuloNET, we investigate how the resulting
temperature rise can affect the first-order leakage. The goal of experiments
done in this regard is to understand whether a first-order secure design, i.e.,
our design of ModuloNET, exhibits first-order leakage if flipping images are
fed into it and, thus, increases the operating temperature. For this purpose,
we compare the t-scores calculated for traces collected from the design when
providing normal (not flipping) and flipping images to BRAM-based input
storage.

In these experiments, before collecting traces, we first wrote the “0” and
“1” alternating patterns into the memory to reach a high die temperature.
More precisely, after about 20 minutes (1,200s), the temperature becomes
almost stable and reaches its maximum value. Note that an adversary inter-
ested in detecting the leakage needs neither this information nor access to
the sensor/monitoring system, as she can simply give the flipping images for
hours to ensure the die temperature is high.

Furthermore, we should highlight that we start with several tens of thou-
sands of traces to see how many traces of the first-order leakage are detectable
after capturing. In this regard, we collected 2M traces from the device in our
experiments. Note that throughout this section, the number of traces refers
to the total number of fixed and random traces, i.e., collecting 2M traces
means that 1M fixed and 1M random traces are collected.

DPA Attack and Key Extraction

After detecting the leakage, the next question is whether the adversary can
leverage the leakage to extract secrets. To answer this, we apply DPA. DPA
stands as a prominent side-channel attack wherein attackers exploit power
consumption patterns to extract secret information [210].

To investigate whether the leakage induced through our HG can be ex-
ploited, we launched four DPA attacks against ModuloNET. First, we exam-

140

Figure 7.4: First-order leakage detection when the heat generator (HG) is
enabled, showing t-score values exceeding the threshold after 2M traces.

ine whether a first-order DPA can break the security of ModuloNET when
the PRNG is disabled, but without enabling the HG. This serves as a base-
line to ensure that masking is correctly implemented. After confirming this,
we analyze how enabling the HG can induce leakage exploitable by DPA.
To further validate our results, we also conduct a second-order DPA to de-
termine if increasing the number of traces allows a successful attack. The
distinguisher used in all cases is Pearson correlation with a confidence level
of 99.99% as suggested in [247].

We obtained the intermediate values from ModuloNET stored in layer
BRAMs and registers between bias addition and masked output for the hid-
den and output layers. These attack vectors for launching DPA are cho-
sen according to the points where the t-score exceeds the threshold, namely
around 500µs for the hidden layer and 750µs for the output layer.

First-Order DPA with and Without PRNG and HG

We first evaluate ModuloNET with PRNG turned off to observe if a first-
order DPA is feasible. As expected, with PRNG disabled, all masked values
are unmasked, making first-order DPA highly successful. Our results indicate
that the DPA correlation exceeds the threshold around 540µs for the hidden
layer and 830µs for the output layer, confirming the vulnerability of the
unprotected design [101].

We then analyze the scenario with PRNG enabled but without enabling
the HG. Under these conditions, the correlation remains below the thresh-
old, verifying the effectiveness of the masking protection against first-order

141

Figure 7.5: First-order DPA results on ModuloNET hidden layer with HG
enabled and PRNG on, showing correlation peaks for successful key recovery.

DPA attacks even with up to 500K traces. This confirms that the prop-
erly masked ModuloNET implementation is resistant to first-order attacks
in normal conditions.

Next, we investigate whether a second-order DPA can break the masking
scheme under normal conditions (PRNG on, HG off). We follow the second-
order DPA methodology proposed in [286, 257] and observe that 500K traces
are sufficient to achieve a successful second-order attack. The leakage points
identified in these results align closely with the time points identified through
t-score analysis.

DPA with PRNG on and HG Enabled

After testing the design under normal conditions, we evaluate how enabling
the HG affects its security. When the HG is turned on, we observe a signifi-
cant increase in first-order leakage, making first-order DPA viable even with
PRNG enabled. Our results demonstrate that an adversary can successfully

142

(a) (b)

Figure 7.6: Results for the second-order DPA for 500K traces against the
(a) hidden and (b) output layer of ModuloNET with HG on.

extract secret values with 880K traces. Compared to the case without HG,
where no successful attack was possible, this highlights the effectiveness of
heat-induced leakage in breaking masking protections.

7.2.5 Key Guesses and Attack Success Rate

To further analyze the effectiveness of our heat-based leakage exploitation,
we evaluate the success rate (SR) of correct versus incorrect key guesses.
We examine how well the first-order DPA attack distinguishes between cor-
rect and incorrect weight values for ModuloNET’s hidden and output layers.
Figure 7.7 illustrates the attack’s effectiveness.

Figure 7.7 shows that the correlation for the correct key guess exceeds
the threshold around 500µs for the hidden layer and 875µs for the output
layer. Meanwhile, all incorrect key guesses remain below the threshold, con-

143

(a) (b)

Figure 7.7: First-order DPA against ModuloNET with HG on at (a) hidden
for 1M traces and (b) output layer for 500K traces (gray lines for wrong
weight guesses and black line for correct weight guess).

firming that the attack correctly identifies the secret values. These results
further validate that heat-induced leakage can be successfully leveraged to
compromise masked NN implementations.

7.2.6 Implications for Secure Hardware Design

The findings presented in this work expose a fundamental limitation in the
effectiveness of masking countermeasures when subjected to temperature-
induced side-channel leakage. As modern FPGA and other hardware acceler-
ators continue to be deployed in critical security applications, it is imperative
to reassess their resilience against heat-induced vulnerabilities. This section
discusses the broader implications of our results and outlines key considera-
tions for designing robust hardware that can withstand temperature-induced
side-channel threats.

One of the most significant takeaways from our study is the realization
that masking techniques, while effective against conventional SCA, are highly
susceptible to environmental variations such as temperature fluctuations.
The core assumption that power consumption of masked shares remains
independent is no longer valid when heat causes timing misalignment and
glitch propagation [91]. This necessitates a paradigm shift in the design of
cryptographic and ML accelerators, where security evaluations must extend
beyond traditional SCA resistance and include environmental factors such as

144

heat and voltage fluctuations [210].
Another critical insight is that heat-induced leakage does not require ad-

versarial access to voltage or clock controls, making it a more accessible
attack vector than traditional fault injection techniques. This means that
even remotely operated systems, such as cloud-hosted FPGA or edge com-
puting devices, can be vulnerable if they execute memory-intensive workloads
that naturally generate heat over time. The ability to induce leakage purely
through workload manipulation represents a significant threat, as it allows
adversaries to compromise security without requiring direct physical modifi-
cations [151, 4].

To mitigate the risks posed by heat-induced leakage, several countermea-
sures must be considered. One potential approach is adaptive frequency
scaling and thermal monitoring, where hardware dynamically adjusts clock
speed and voltage levels based on real-time temperature measurements. By
detecting excessive temperature rises and adjusting operational parameters
accordingly, designers can help prevent timing misalignment and glitch prop-
agation that lead to first-order leakage. However, such mechanisms must be
carefully designed to avoid introducing new side-channel vulnerabilities re-
lated to frequency scaling.

Another promising countermeasure is enhanced placement and routing
constraints for masked implementations. Our results indicate that the phys-
ical placement of logic elements plays a crucial role in determining how heat
affects masking security. By enforcing strict placement constraints that min-
imize temperature-induced timing variations, hardware designers can reduce
the impact of environmental factors on side-channel security [345]. This ap-
proach is particularly relevant for FPGA, where designers have some degree
of control over component placement.

Additionally, power-aware masking techniques should be explored to ad-
dress heat-induced vulnerabilities. Unlike traditional masking, which as-
sumes independent power consumption of shares, power-aware masking ex-
plicitly accounts for variations in power and timing caused by temperature
fluctuations. This could involve incorporating randomized timing adjust-
ments, dynamic voltage compensation, or alternative sharing schemes that
are more resistant to environmental variations [195, 106].

From an architectural perspective, hardware-level countermeasures such
as dedicated thermal management units and secure power distribution net-
works should be integrated into future security-critical processors and accel-
erators. These units can actively monitor and regulate temperature, ensur-

145

ing that masked computations remain secure even under extreme operating
conditions. Furthermore, thermal isolation techniques—such as strategically
placing security-critical components away from high-power regions—can help
minimize the impact of localized heating effects.

The Bake It Till You Make It study [253] demonstrated how tempera-
ture fluctuations, even those generated internally by circuit components, can
compromise masked implementations, leading to unexpected leakage. These
findings underscore the challenges in securing hardware accelerators against
SCA, even when conventional countermeasures like masking are in place.

To address these challenges, more robust approaches have been proposed,
extending beyond masking and into the realm of cryptographic secure com-
putation techniques. One such approach is HWGN2 [156], which leverages
SFE and GC to provide inherent resilience against power SCA. Unlike tradi-
tional masking, which relies on statistical independence of shares, HWGN2

fundamentally transforms the execution model, preventing direct leakage of
intermediate values. By adopting garbled circuit-based processing within
a specialized hardware framework, HWGN2 offers a scalable and efficient
countermeasure, particularly for DL accelerators deployed in security-critical
applications.

This shift from statistical countermeasures (masking) to cryptographic
countermeasures (GC) represents a fundamental rethinking of side-channel
resilience. The next section explores HWGN2’s design and implementation,
highlighting its advantages in securing DL models against power SCA.

7.3 HWGN2: Side-channel Protected Neu-

ral Network through Secure and Private

Function Evaluation

7.3.1 Adversary Model

NN, particularly those deployed in security-sensitive applications, present
valuable assets that require protection. These assets include the NN archi-
tecture, hyperparameters, and trained parameters, all of which are crucial
for maintaining model integrity and accuracy [29]. Furthermore, in various
real-world applications, such as medical diagnostics and defense-related sys-
tems, the input data itself contains highly sensitive information [261]. As a

146

Figure 7.8: HWGN2 framework: The process begins with training the NN
as done for a typical DL task. The second step corresponds to the imple-
mentation of the garbled NN hardware accelerator along with running the
OT protocol. The accelerator is delivered to the end-user, who attempts to
collect the side-channel traces with the aim of extracting information on NN
hardware acceleration (architecture, hyperparameters, etc.).

result, ensuring both the confidentiality of user inputs and the privacy of the
NN itself is a critical requirement.

To frame our security discussion, we adopt the standard definitions of
security and privacy from the SFE and PFE literature [35]. These definitions
allow us to precisely characterize the attack vectors and security guarantees
associated with HWGN2.

HWGN2 Adversary Model

In our work, we primarily consider the HbC adversary model, where the
adversary plays the role of the evaluator (Bob), while the NN provider acts
as the garbler (Alice) [226, 35] (see Figure 7.8). This adversary has access to
the garbled circuit representation of the NN and attempts to extract secret
information during the inference phase.

Following state-of-the-art security models [101, 102], HWGN2 enforces a
security framework where:

• The NN is trained offline by the garbler, who maintains full control
over the model’s hyperparameters and architecture.

• The hardware implementation of HWGN2 strictly encompasses the
evaluator engine, meaning that neither the garbling module nor en-
cryption mechanisms are exposed on hardware.

147

• The evaluator operates with garbled inputs prepared offline, preventing
direct exposure of sensitive intermediate computations.

7.3.2 Side-Channel Attack Scenario

A core security concern in hardware-based DL inference is vulnerability to
power and EM SCA [334, 439]. The adversary in this setting can exploit
physical leakage to infer hidden parameters, even without direct access to
the model’s architecture. The attack process typically follows these steps:

1. The evaluator supplies chosen inputs to the NN accelerator.

2. Power or EM traces are collected during inference, either via direct
physical access or remotely.

3. These traces are analyzed using techniques such as DPA [210], Tem-
plate Attacks [69], or CPA [56] to recover sensitive parameters.

7.3.3 HWGN2 Countermeasures Against SCA

HWGN2 mitigates the risk of SCA through SFE techniques, ensuring that
intermediate computations never leak meaningful data. Unlike conventional
masking approaches, which rely on statistical independence of shares, HWGN2

employs:

• Garbled circuit-based evaluation, which obfuscates computation
flows and eliminates deterministic power consumption patterns.

• Constant-time execution models, preventing adversaries from de-
ducing information based on timing variations.

• Structured memory access patterns, reducing vulnerability to cache,
memory-based SCA.

Unlike previous side-channel countermeasures for NN, HWGN2 inherently
supports resiliency against FIA and cache/memory-based attacks, further
strengthening its applicability in real-world secure inference scenarios.

By adopting this adversary model and security framework, HWGN2 en-
sures robust protection against both passive (HbC) and active (malicious)
adversaries, making it a viable solution for privacy-preserving DL inference.

148

7.3.4 Core Architecture of HWGN2

Garbled Circuit-Based Computation

At the heart of HWGN2 lies a SFE approach, specifically utilizing GC to
facilitate privacy-preserving inference. The garbling process ensures that in-
termediate computations do not leak sensitive information through power
consumption, EM emissions, or other side-channel sources [35]. Accord-
ing to the garbling protocol G, the NN model is represented as a Boolean
circuit consisting of logic gates, each of which is transformed into a gar-
bled form. This process involves encoding the gate’s truth table using en-
crypted labels, such that only the correct input keys can decrypt and re-
veal the correct output. The general process follows Yao’s garbling scheme,
as illustrated in Figure 4.1. First, the garbler, who is the NN provider,
transforms the NN function f = fNN into a garbled circuit representation
(F, e, d)← Gb(1k, f). Next, the input values x are encoded into correspond-
ing wire labels (X1

0 , X
1
1 , . . . , X

0
n, X

1
n) ← e. The garbled function F is then

sent to the evaluator, who remains oblivious to the raw NN parameters. The
evaluator interacts with the garbler through an OT protocol, where it receives
the correct wire labels corresponding to its private input. The evaluator then
computes the garbled function y ← De(d,Ev(F,X)) using the garbled cir-
cuit, ensuring that no intermediate values are exposed. This approach in-
herently prevents side-channel leakage, as every gate evaluation operates on
encrypted values. Even if an attacker were to capture power traces or EM
emissions, the randomized labels would obscure the actual data [226].

Instruction Set and Execution Model

HWGN2 implements an efficient hardware execution model inspired by MIPS
architecture, allowing a streamlined, instruction-based garbling approach
while maintaining security. Each garbled circuit operation is mapped to a
specific instruction, enabling direct execution on the hardware engine. These
instructions define logical operations such as AND, OR, and XOR, as well
as state transitions for gate evaluations. Unlike traditional garbled circuit
implementations, which are often sequential, HWGN2 supports a parallel
processing model where multiple gates are evaluated simultaneously. This
significantly reduces execution time while maintaining security [101]. An-
other critical aspect of HWGN2 is its approach to oblivious memory access.
To mitigate timing SCA, all memory accesses follow a structured access pat-

149

tern, preventing attackers from deducing sensitive information based on ac-
cess timing [210]. Additionally, the garbler generates randomized encryption
keys for each wire label, ensuring that the evaluator never sees a consistent
pattern in circuit evaluation. These execution model enhancements make
HWGN2 highly efficient and resistant to side-channel threats.

Hardware-Software Co-Design

The efficient integration of hardware and software components is critical for
achieving both security and performance in HWGN2. The system architec-
ture includes a dedicated garbling engine that pre-processes the NN before
inference begins, reducing computational overhead compared to software-
only garbling [439]. Since OT is a fundamental component of the protocol,
HWGN2 implements an optimized hardware OT module to reduce commu-
nication latency and improve efficiency. The execution engine maintains a
hardware-protected state, ensuring that secret keys and intermediate values
remain isolated from potential attackers. In addition to the hardware opti-
mizations, the software layer of HWGN2 includes a compiler that translates
NN models into optimized garbled circuit representations. This step ensures
that the circuit is minimal in size while maintaining security. To facilitate
practical deployment, HWGN2 is designed to be compatible with widely used
ML libraries such as TensorFlow and PyTorch, allowing seamless integra-
tion into real-world applications. Although HWGN2 primarily focuses on
hardware-based garbled inference, it also supports hybrid execution models
where certain operations can be offloaded to software for increased flexibility.

Security Advantages of HWGN2

By combining garbled circuit-based computation with hardware acceleration
and secure execution, HWGN2 provides multiple layers of protection against
side-channel threats. Since all computations are performed on encrypted
labels, power consumption patterns do not correlate with the actual data,
providing protection against power analysis attacks [69]. The structured ex-
ecution model ensures that every inference operation runs in constant time,
preventing attackers from deducing information based on variations in exe-
cution latency. Furthermore, the randomized nature of wire label encoding
prevents adversaries from inferring NN parameters through EM leakage [56].
Unlike conventional masking approaches that can be bypassed by injecting

150

faults, HWGN2 does not expose intermediate values, making fault-based at-
tacks infeasible. The combination of these techniques ensures that DL in-
ference remains both efficient and secure, addressing the limitations of prior
countermeasures against SCA.

7.3.5 Side-Channel Resiliency Implementation and Eval-
uation

Concrete Implementation

When defining the PFE scheme F , it is mentioned that F can securely
and privately compute any function, which can be garbled by running the
garbling scheme G. This fundamental principle enables the construction of a
secure execution framework where computations can be securely outsourced
without revealing sensitive information about the underlying function. In
this context, the algorithm Π can be interpreted as a representation of the
instruction set for a processor circuit, allowing F to be realized in practice
by garbling the entire processor circuit and its corresponding instruction
set [364].

A key distinction between HWGN2 and previous works lies in the fun-
damental objective of the implementation. Unlike [401], which focused on
optimizing the execution of an entire public MIPS program, our approach
aims to securely execute a garbled instruction set while maintaining com-
plete function privacy. This allows HWGN2 to support privacy-preserving
execution where the evaluator never gains knowledge about the structure
of the underlying function. To demonstrate this, we present two different
MIPS-based implementations, both serving as proof-of-concept prototypes
that validate the effectiveness of garbled computation in mitigating side-
channel vulnerabilities.

Although our implementations are based on MIPS architecture, they can
be extended to support other processor architectures, such as ARM.

7.3.6 TinyGarble-based Implementation of HWGN2

TinyGarble [362] is a widely used garbling framework that supports Yao’s
garbling scheme and leverages hardware synthesis tools to automatically gen-
erate Boolean circuits for secure computation. The advantage of this ap-
proach lies in its ability to automatically transform hardware descriptions

151

Figure 7.9: The execution flow of HWGN2: (a) TinyGarble-based implemen-
tation [362] and (b) HWGN2 with improved hardware resource utilization
efficiency. Key elements: L: garbled labels, GT : garbled tables, e: encryp-
tion labels, d: decryption labels, x: evaluator’s raw input, X: evaluator’s
garbled input, Y : garbled output, Yi, Xi, GTi, Li: corresponding elements
for the ith sub-netlist, and SCD: circuit description used for mapping and
evaluation.

into secure computation circuits, enabling efficient execution of garbled pro-
grams.

The main strengths of TinyGarble stem from its use of sequential circuit
descriptions and several garbling optimizations, including Free-XOR opti-
mization [214], which eliminates the need for encryption in XOR gates, re-
ducing computational overhead; Row Reduction [276], which minimizes the
size of garbled tables by removing redundant rows; and Fixed-Key Block
Cipher Garbling [34], which accelerates garbling operations by using pre-
computed encryption keys.

Figure 7.9(a) illustrates the execution flow of HWGN2 following the Tiny
Garble-based implementation. The process is divided into multiple stages.
First, the garbler generates encryption labels e and constructs the garbled
circuit (GC) by producing garbled tables (GT), garbled labels (L), and a cus-
tom circuit description (SCD) mapping the GC to the function f . Second,
the evaluator receives (GT,L, SCD, e) via a single OT interaction and de-
rives the garbled input X from its raw input x. Third, the evaluator executes
the garbled circuit sequentially using the TinyGarble scheduler, performing
decryption and evaluation of each gate. Fourth, the garbler provides decryp-
tion labels d to enable the evaluator to decode the final output Y and obtain
the raw output y.

This sequential execution model provides scalability but incurs high hard-
ware resource utilization, particularly in memory and logic elements, due to
the size of DL circuits [192]. To address these limitations, we introduce an

152

improved method for hardware resource efficiency.

7.3.7 HWGN2 with Improved Hardware Resource Uti-
lization Efficiency

A critical challenge in garbled inference is the trade-off between memory
consumption and communication cost. To mitigate memory overhead while
maintaining security, we adapt the TinyGarble2 framework [173], which par-
titions large circuits into sub-netlists for incremental evaluation.

Instead of sending all garbled tables and labels at once, HWGN2 divides
the computation into sub-netlists, each processed sequentially. This achieves
significant reductions in memory usage, albeit at the cost of increased OT
interactions. The trade-off is given by

M =
Ngate

4
(7.1)

where Ngate is the total number of gates, and M determines the number
of OT interactions required.

As illustrated in Figure 7.9(b), the execution proceeds as follows. First,
the garbler sends one garbled table and its corresponding input labels per
cycle instead of the entire circuit. Second, the evaluator processes each
sub-netlist incrementally, returning its output to the garbler for decryption.
Third, the final output is reconstructed after all sub-netlists are evaluated.

Since the garbler controls the scheduling and SCD mapping, the evaluator
never learns the circuit topology, ensuring PFE.

7.3.8 Garbled MIPS Evaluator

To implement HWGN2 on an FPGA, we designed a garbled MIPS evaluator,
modifying the Plasma MIPS core [315]. Figure 7.10 illustrates its architec-
ture.

The instruction handler receives garbled MIPS instructions, which are
encrypted representations of MIPS operations. The garbled instructions
are fetched, decoded, and executed without leaking information about their
function. Each instruction corresponds to a securely garbled gate, ensuring
privacy-preserving execution.

Figure 7.11 provides an example evaluation of a 2-bit adder using the
garbled MIPS evaluator. Garbled instructions are processed step-by-step,

153

Figure 7.10: Garbled MIPS evaluator architecture, based on modifications
to the Plasma MIPS core [315]. The modified instruction handler processes
garbled instructions while ensuring complete privacy of the execution flow.

Figure 7.11: Example execution of a 2-bit adder using the garbled MIPS
evaluator. The process involves fetching, decoding, and executing garbled
instructions in a privacy-preserving manner.

maintaining execution privacy while ensuring correctness.

7.3.9 Hardware Implementation Resource Utilization

To assess the trade-off between communication cost, hardware resource uti-
lization, and performance, we have synthesized the garbled evaluator in two
different configurations. The first configuration corresponds to HWGN2 with
improved hardware resource utilization efficiency, capable of executing a sin-
gle garbled instruction per OT interaction, as described in Section 7.3.7. The
second configuration represents a fully functional HWGN2 implementation
based on the TinyGarble framework, capable of executing all 2345 garbled
MIPS instructions with a single OT interaction, as explained in Section 7.3.6.

154

This dual-configuration approach allows us to comprehensively evaluate the
impact of optimizing for either resource efficiency or execution speed.

For synthesis and implementation, we utilized Xilinx Vivado 2021 to gen-
erate the bitstream of our design. To ensure that the bitstream accurately
represents the intended design without any modifications introduced by syn-
thesis optimizations, we explicitly disabled the place-and-route optimization
and applied the DONT-TOUCH attribute to critical modules. This guaran-
tees that the logical and physical design remains exactly as specified at the
RTL level, preventing unintended optimizations that could affect security
and performance.

To evaluate HWGN2, we implemented three distinct MLP architectures,
each trained for digit classification tasks. The first architecture, BM1, con-
sists of an input layer with 784 neurons, three hidden layers with 1024 neurons
each, and an output layer with 10 neurons. This model has been widely used
in prior secure computation research, with results reported in [327, 101, 364].
The second architecture, BM2, is a smaller MLP with an input layer of 784
neurons, two hidden layers containing 5 neurons each, and an output layer of
10 neurons. The third model, BM3, features an input layer of 784 neurons,
three hidden layers with 6, 5, and 5 neurons respectively, and an output layer
with 10 neurons. These models allow us to evaluate HWGN2 across varying
network complexities.

Hardware Resource Utilization and OT Cost Analysis

In HWGN2, the processing of garbled instructions and input labels occurs
over 32-bit data widths. To maintain a fair comparison, we include a 32-bit
MAC unit [327] in the reported resource utilization. Notably, BoMaNET
and ModulaNET do not rely on OT for input exchange, whereas RedCrypt
uses two OT interactions, one for input and one for output. In contrast,
HWGN2 requires an additional M OT interactions, where M represents the
number of sub-netlists. By setting the sub-netlist size to a single gate, and
considering that every four gates translate to a garbled instruction, the total
number of OT interactions is computed as:

M =
Ngate

4
(7.2)

For BM1, which comprises Ngate = 9380 gates, this results in:

155

Table 7.3: Hardware resource utilization and OT cost comparison between
approaches applied against BM1.

Approach LUT FF OT Interaction
GarbledCPU [364] 21229 22035 2

RedCrypt [327] (One MAC Unit) 111000 84000 2
BoMaNET [102] 9833 7624 N/A
ModulaNET [101] 5635 5009 N/A

HWGN2 (1 instruction per OT interaction) 1775 1278 2346

Table 7.4: Execution time and communication cost comparison between
HWGN2 and the state-of-the-art approaches for BM1. Results for [364] and
HWGN2 are based on an FPGA clock frequency of 20MHz. (N/R: not re-
ported).

Approach Time (Sec) Communication (MB)
GarbledCPU [364] 1.74 N/R
RedCrypt [327] 0.63 5520

TinyGarble2 [173] 9.1 7.16
HWGN2 (1 instruction per OT interaction) 3.25 12.39

HWGN2 (Complete set of instructions per OT interaction) 0.68 619

2 +
9380

4
= 2346 (7.3)

This accounts for 2 standard OT interactions plus 2344 additional OT
interactions for processing garbled instructions.

7.3.10 Execution Time and Communication Cost Eval-
uation

To measure the computational overhead of HWGN2, we deployed our im-
plementation on a Xilinx Artix-7 FPGA (clocked at 20 MHz) for secure
evaluation, while the garbler operated on an Intel Core i7-7700 CPU (3.60
GHz) with 16 GB RAM, running Linux Ubuntu 20. The execution time
metric excludes offline preparation steps such as garbled circuit generation
and label encryption, as these are performed prior to inference.

The results demonstrate that HWGN2 achieves substantial improvements
in execution efficiency and communication overhead compared to prior secure
inference methods.

156

7.3.11 Side-Channel Evaluation

Side-channel Measurement Setup

HWGN2 has been implemented on an Artix-7 FPGA device XC7AT100T
with package number FTG256. To evaluate its resilience against power and
EM SCA, we set up a dedicated side-channel measurement environment us-
ing a Riscure setup. The power and EM traces were captured using a LeCroy
WavePro 725Zi oscilloscope, which has a high sampling rate and deep mem-
ory to facilitate high-resolution side-channel measurements.

To ensure accurate trace collection and prevent information loss, we con-
figured our design frequency to 1.5 MHz while setting the oscilloscope sam-
pling frequency to 127.5 MHz. This configuration ensured that for every
clock cycle, we collected 85 sample points, providing a fine-grained view of
power and EM variations during computation.

The reduction of the design frequency to 1.5 MHz was necessary to acquire
high-resolution side-channel traces, but it also increased the execution time.
The classification of a single input in the BM1 model required an execution
time ranging between 3.25 and 4.73 seconds. Given that modern side-channel
analysis techniques require millions of traces, collecting a sufficient dataset
from BM1 alone would introduce a significant time overhead. To address this,
we followed an approach similar to [101] and used a smaller MLP architecture,
namely BM2, for trace collection.

BM1 is a deep multilayer perceptron (MLP) model that consists of an
input layer with 784 neurons, three hidden layers each containing 1024 neu-
rons, and an output layer with 10 neurons. This architecture was selected
as it provides a realistic benchmark for evaluating side-channel resilience in
DL inference. BM1 was trained on the MNIST dataset and was designed to
serve as a representative test case for DL inference on secure hardware.

BM2 is a smaller MLP architecture, designed with reduced complexity
for efficient side-channel trace collection. It consists of an input layer with
784 neurons, two hidden layers with 5 neurons each, and an output layer
with 10 neurons. The reduced size of BM2 allowed for a significant reduction
in execution time per inference, enabling the collection of a large number of
traces in a practical timeframe. Using BM2, each classification was completed
in 312 ms under HWGN2 running at 1.5 MHz. Since HWGN2 processes each
instruction separately in a sequential manner, and given that NN exhibit
repetitive computation patterns, we argue that leakage characteristics from

157

Figure 7.12: TVLA test results for BM2 implementation on (a) an unpro-
tected MIPS core and (b) HWGN2 with one instruction per OT interaction
(computed for 10K traces).

BM2 can be extrapolated to larger architectures.

7.3.12 TVLA Test Evaluation of Power Side-Channel

To analyze the power side-channel leakage, we applied the TVLA test to two
different implementations: an unprotected MIPS core (Plasma core from the
OpenCores project [315]) and HWGN2 with an execution capacity of one
instruction per OT interaction.

Figure 7.12 shows the results of the TVLA test for both implementations.
The t-scores were calculated using 10,000 captured traces, with 5,000 traces
collected for fixed inputs and 5,000 traces collected for random inputs.

As seen in Figure 7.12, the unprotected MIPS core exhibits significant
leakage, with t-scores exceeding the ±4.5 threshold after only 10,000 traces.
In contrast, the t-scores for HWGN2 remain below the threshold, demon-
strating that it does not leak sensitive information through power SCA.

To further validate the resilience of HWGN2, we extended the experiment
by capturing 2 million (2M) traces—1 million for fixed inputs and 1 million
for random inputs. The results confirmed that the t-scores remained below
the leakage threshold, even when analyzed over a large trace population.

The results in Figure 7.13 further confirm that HWGN2 remains resilient
against power SCA across different configurations, regardless of whether the
instruction capacity per OT interaction is one instruction or a full instruction
set.

158

Figure 7.13: TVLA test results for HWGN2 applied to (a) XNOR-based BM2
with full instruction set per OT, (b) BM2 with full instruction set per OT,
(c) XNOR-based BM2 with one instruction per OT, and (d) BM2 with one
instruction per OT (calculated for 2M power traces).

7.3.13 TVLA Test Evaluation of EM Side-Channel

EM side-channel analysis is another powerful attack vector, as demonstrated
by Peeters et al. [295] and Standaert et al. [368]. Studies have shown that
EM leakage can often provide more information than power leakage, making
it a critical factor in evaluating hardware security.

To evaluate the EM leakage resistance of HWGN2, we captured traces
using an HP EM probe 125 (SN126 0.2mm) positioned near the FPGA sur-
face. The TVLA results, shown in Figure 7.14, indicate that the t-scores
for EM traces remain below the ±4.5 threshold, confirming the EM leakage
resilience of HWGN2.

7.3.14 Architecture-Related Leakage Analysis

The ability of an adversary to extract structural information about a DL
model through side-channel analysis was demonstrated in [29]. The authors
showed that EM traces captured from an unprotected DL model running on

159

Figure 7.14: TVLA test results for HWGN2 applied to (a) XNOR-based BM2
with full instruction set per OT, (b) BM2 with full instruction set per OT,
(c) XNOR-based BM2 with one instruction per OT, and (d) BM2 with one
instruction per OT (calculated for 2M EM traces).

an Atmel ATmega328P microcontroller revealed patterns that corresponded
to the model’s architecture. Specifically, they observed distinct signal pat-
terns for different layers and neuron activations.

To examine whether HWGN2 exhibits similar leakage patterns, we imple-
mented the same BM3 model used in [29] and captured 100,000 EM traces.
Figure 7.15 compares the captured traces.

The discussion so far has highlighted how HWGN2 leverages SFE and
PFE to provide side-channel-resilient NN execution. By employing GC and
optimizing OT, HWGN2 ensures that sensitive computations are protected
from power and EM side-channel leakage. The focus has been on mitigating
classical threats posed by an HbC adversary in a traditional computing setup,
where a garbler and evaluator engage in secure computation over a well-
defined protocol.

While HWGN2 offers significant improvements in security for secure DL
accelerators, one of its major limitations stems from the computational and
communication overhead of GC, particularly in scenarios involving high-

160

Figure 7.15: A randomly chosen EM trace pattern captured from BM3 imple-
mentation on (a) Atmel ATmega328P microcontroller [29], (b) FPGA with
unprotected MIPS evaluator [315], and (c) HWGN2. Red lines indicate where
the unprotected evaluator starts processing the next layer.

throughput inference workloads. The reliance on a conventional execution en-
vironment—where the garbler and evaluator interact over a network—introduces
latency bottlenecks that can limit scalability.

To further improve the efficiency of GC-based secure computation, we
now shift our focus to Garblet, a framework that extends the concept of
secure MPC to the domain of chiplet-based architectures [158]. Un-
like HWGN2, which assumes a single evaluator executing the GC-protected
workload, Garblet distributes the garbling and evaluation process across
physically distinct chiplets, thereby reducing communication overhead and
improving performance through parallelism.

The key motivation behind Garblet is to leverage the modular design
of chiplet-based architectures to overcome the scalability limita-
tions of traditional GC implementations. In a chiplet-based system,
individual chiplets can specialize in specific computational tasks—allowing
the garbler and evaluator to operate as distinct chiplets within the
same system-on-package (SoP) environment. This not only reduces the
cost of GC evaluation but also enables more efficient hardware isolation,
preventing untrusted chiplets from interfering with secure computations.

By integrating custom hardware OT modules and an optimized
evaluator engine, Garblet enhances secure computation efficiency while
minimizing communication between chiplets. Additionally, it introduces a
novel circuit decomposition technique that partitions complex circuits
into smaller, manageable subcircuits—enabling parallel evaluation across
multiple chiplets. This approach fundamentally reshapes the execution

161

model of GC-based secure computation, offering a path toward high-
performance MPC implementations in next-generation computing
platforms.

In the following sections, we will explore the Garblet framework, its
chiplet-based implementation, and the practical considerations for
deploying secure MPC in chiplet-based systems.

7.4 Garblet: MPC for Protecting Chiplet-

based Systems

7.4.1 Adversary Model in Chiplet-Based Secure Com-
putation

We assume that chiplets are deployed to perform distributed computations,
where multiple computational tasks are executed in parallel across differ-
ent chiplets. This distributed architecture enables improved scalability and
computational efficiency but also introduces new security concerns regarding
data confidentiality and integrity.

At least one chiplet in the system is assumed to be trusted and is respon-
sible for initiating and coordinating secure MPC. This trusted chiplet ensures
that computations follow the prescribed cryptographic protocols while main-
taining the privacy and integrity of the data being processed.

An adversary in this setting aims to compromise the security of the sys-
tem by gaining access to untrusted chiplets. The attacker may attempt to
corrupt at least one chiplet to achieve the following goals. The adversary can
attempt to intercept data exchanged between chiplets, extracting sensitive
user information or computational secrets. If an adversary gains control over
an untrusted chiplet, they may attempt to tamper with the computations,
introducing incorrect results or inferring hidden parameters of the processed
model. The adversary may use SCA such as power analysis, EM leakage anal-
ysis, or memory access timing attacks to extract partial or full information
about secret inputs or processed outputs.

To counteract these threats, one can rely on GC-based computation be-
tween chiplets, where security against a passive adversary is provably guaran-
teed. GC ensure that chiplets only process encrypted representations of data,
preventing an adversary from learning useful information even if they gain

162

access to one of the untrusted chiplets. The garbled circuit approach also
minimizes the risk of leakage through communication channels, as chiplets
exchange only encrypted labels and not raw computational data.

In secure MPC, traditional adversary models include HbC adversaries
and malicious adversaries. A semi-honest adversary follows the prescribed
protocol steps without actively deviating from execution. However, while
they do not alter the execution, they attempt to infer sensitive information
by analyzing exchanged messages or intermediate results. Although this type
of adversary does not disrupt computation, they still pose a significant risk
in environments where data confidentiality is crucial. A malicious adversary,
on the other hand, actively attempts to disrupt the protocol execution. They
may manipulate input data, modify circuit structures, inject faults into the
computation, or generate invalid GC that produce incorrect outputs. In
the context of chiplet-based computation, a malicious adversary may tamper
with inter-chiplet communication, introduce hardware Trojans in untrusted
chiplets, or execute sophisticated FIA [226].

A particular concern in chiplet-based architectures is the risk of supply
chain attacks, where an adversary compromises the design or manufacturing
process of a chiplet before it is integrated into the final system. This risk
necessitates stringent cryptographic safeguards, including techniques such as
ZKPs and hardware attestation to ensure the authenticity of chiplets partic-
ipating in computation.

Garblet mitigates these threats by implementing secure computation tech-
niques such as GC, OT, and function privacy mechanisms. By executing
computations within a structured chiplet-based environment, it ensures that
even if one or more chiplets are compromised, no meaningful information
about the processed data is revealed.

7.4.2 Methodology

In this section, we first elaborate on the client-server model and its map-
ping to Chiplet then the implementation of circuit decomposition using the
reverse logic tracing approach [77], which divides the given circuit into sub-
circuits. After that, each sub-circuit is assigned to dedicated engines for
parallel processing. For securely and obliviously transferring inputs, we im-
plement a novel dedicated hardware OT module. For GC generation, one
can use any existing garbling engine, e.g., FASE [174]. We also create the
very first evaluator engine on the chiplet to work efficiently with the garbling

163

Figure 7.16: The sub-circuits of a two-bit adder corresponding to each out-
put.

engine.

Client-Server Model and Chiplet Mapping

The design of Garblet leverages the traditional server-client model often used
in secure computation frameworks. In this model, the garbler acts as the
server and handles the majority of computationally intensive tasks, such as
generating garbled tables and managing cryptographic keys. The evaluator,
acting as the client, performs less computationally demanding tasks, primar-
ily focused on decrypting the garbled tables and evaluating the circuit. This
division of roles ensures that the evaluator’s operations are optimized for
speed, enabling real-time application scenarios, while the garbler focuses on
heavy computation with higher resource requirements.

In Garblet, this client-server model is mapped to a chiplet-based architec-
ture, where one chiplet functions as the garbler chiplet and the other as the
evaluator chiplet. The garbler chiplet is equipped with dedicated hardware
modules, including AES-based encryption units, a key management unit, and
a pipelined garbling engine to efficiently handle the resource-intensive gar-
bling process. In contrast, the evaluator chiplet is designed for low-latency
operations, integrating modules for secure OT protocol execution and opti-
mized evaluator engines.

164

Algorithm 11: Circuit Decomposition
Input: Circuit f with outputs O and inputs I
Output: Set of sub-circuits C, one for each output in O

Step 1: Extract Outputs and Inputs
Let O ← ExtractOutputs(f) ; // Extract output nodes

Let I ← ExtractInputs(f) ; // Extract input nodes

Step 2: Initialize Sub-Circuit Set
Initialize an empty set C to store sub-circuits for each output.;

Step 3: Reverse Logic Tracing
foreach output o ∈ O do

Initialize sub-circuit Co for o;
Call ReverseTraverse(o, f, Co) ; // Trace back to inputs

// Recursive tracing function

Function ReverseTraverse(n, f, Co):
if n is an input node then

return ; // Stop at primary input

Add n and its gate to Co;
foreach input i of gate n do

ReverseTraverse(i, f, Co) ; // Recurse on gate inputs

Step 4: Construct and Optimize Sub-Circuits
foreach o ∈ O do

Co ← ConstructSubCircuit(Co) ; // Compile traced gates

Co ← OptimizeCircuit(Co) ; // Minimize redundancy

Return C ; // Return the set of optimized sub-circuits

Reverse Logic Tracing for Circuit Decomposition

Reverse logic tracing decomposes a circuit by backtracking from each output
node to its input dependencies, capturing all gates, wires, and connections
involved in the computation. This process is illustrated in Algorithm 11.
The decomposition starts by selecting the primary outputs and performing
a depth-first traversal (DFT) [77] in reverse, tracing the logic back to the
primary inputs (PIs). During this traversal, each gate and input affecting the
output is marked, forming a complete dependency tree. After constructing
these dependency trees, each sub-circuit is compiled as an isolated block with
all necessary components. The final step involves optimizing each sub-circuit
for logic redundancy by simplifying or combining gates and paths that do not
directly impact the output, thereby reducing complexity while maintaining
full functionality.

By dividing circuits into sub-circuits using reverse logic tracing, our method-
ology facilitates parallel processing, critical for scaling to larger and more
complex circuits. The number of sub-circuits generated increases linearly

165

with the number of circuit outputs, enabling finer granularity in workload
distribution. While this increases pre-processing time slightly, it significantly
enhances scalability by allowing multiple garbling and evaluator engines to
operate concurrently.

As an example, Fig. 7.16 shows the sub-circuits of a two-bit adder, with
each dashed area representing a sub-circuit responsible for a specific output
bit. The gray dashed area is the G1 gate connected to the S0 output and A0

and B0 inputs. The dark blue dashed area is the sub-circuit of G2, G3, and

G4 gates connected to S1 output and all the inputs. The third sub-circuit
includes G7, G6, G5, G3, and G2 connected to the CO output and all the
circuit inputs.

7.4.3 Oblivious Transfer Implementation

The OT module enables secure transmission of data between the Garbler
and Evaluator chiplets. We implemented a hardware-based 1-out-of-2 OT
module, which comprises three primary blocks: the Key Generator, Ran-
dom Selector, and Communication Interface, each designed in Verilog and
synthesized onto the chiplets.

The Key Generator Block on the Garbler Chiplet uses a True Random
Number Generator (TRNG) and key management unit to produce crypto-
graphic keys for each input wire. The TRNG outputs are processed by a
Von Neumann extractor [298] to ensure uniform distribution. For each input
wire Wi, a random key K0

i is generated, and K1
i = K0

i ⊕ δ, where δ is a se-
cure global offset. These keys are stored in dual-port BRAM, with retrieval
managed by a control unit.

The Random Selector Block on the Evaluator Chiplet generates a random
bit si for each wire, determining which key (K0

i or K1
i) will be used. Each

selection bit si is masked with a one-time pad ri to form mi = si ⊕ ri, then
stored in a FIFO buffer. The masked bits mi are sent to the Garbler Chiplet
via the Communication Interface using a handshaking protocol.

The Communication Interface supports secure data exchange using high-
speed protocols such as AXI and PCIe. Data channels use AXI4-Lite for
control and AXI4-Stream for high-bandwidth data transfer, with data en-
crypted before transmission to ensure privacy. Dual-port BRAM buffers
incoming and outgoing data, with a control FSM managing data flow to
prevent conflicts.
OT Execution. The Garbler Chiplet initializes its TRNG and generates a

166

Algorithm 12: Evaluator Engine Implementation
Input: Garbled Circuit C, Garbled Tables T , Input Keys Kin

Output: Final Output Keys Kout

InitializeMMU();
Initialize dual-port BRAM for input keys and garbled tables;
Configure AES cores for decryption mode;

ReceiveKeys(Kin);
Receive the evaluator’s input keys through the OT protocol and store them in BRAM;
Synchronize with Garbler Chiplet to ensure all keys are securely stored;

foreach gate Gi in C do
if Gi is XOR gate then

Kout ← XOR(Kin1,Kin2) ; // Use Free-XOR optimization

else
Kout ← DecryptGate(Kin, Ti) ; // Decrypt using AES in decryption mode

Store Kout in BRAM for subsequent gate evaluations;
ManageMemory();

ManageMemory();

Collect all output keys Kout corresponding to the circuit’s primary outputs;
Concatenate the keys to form the final output;
TransmitData((Final Output));
Send the final output to the external evaluator for verification or further use;

unique global offset δ while the Evaluator Chiplet pre-loads the random bits
ri. The Garbler Chiplet generates keys K0

i and K1
i for each input wire and

stores them. The evaluation chiplet generates selection bits si, masks them
with ri to produce mi = si ⊕ ri, and sends them to the Garbler chiplet. The
Garbler Chiplet computes the selected key Ksi

i = Kmi⊕ri
i and transmits it to

the Evaluator Chiplet, which stores the keys for evaluation.

7.4.4 Evaluator Engine Implementation

The literature suggested that a garbling engine can be modified to create an
evaluator engine [174]; however, based on our experience, this task is more
delicate than expected. For implementing the evaluator engine, one needs to
implement input key handling, decryption logic, and memory management,
as detailed in Algorithm 12. In our efficient and practical evaluator engine,
only a single key Ki per input wire is needed. The hardware OT module
transmits the evaluator’s selected keys, which are stored in dual-port BRAM.
In this way, for each wire Wi, BRAMKey[i] = Ki. A synchronization unit
ensures evaluation starts only after the secure storage of keys. Here, secure
storage means that all keys are stored in the isolated memory and all buffers

167

are free, i.e., the handshake signal and acknowledge signal are both raised to
1; otherwise, the key values are accessible during the operations. The AES
cores are reconfigured for decryption mode. For each gate Gi, the evaluator
decrypts the garbled truth table entry Ei:

Kout = AES−1(Kin, Ei) = AES−1(Kin,AES(Kin, Kout ⊕R)),

where R is a random value. For XOR gates, the output key is directly com-
puted: Kout = Kin1 ⊕ Kin2. This avoids decryption and reduces computa-
tional overhead. Memory management was optimized using a Memory Man-
agement Unit (MMU) that dynamically allocates addresses for sub-circuits
being evaluated:

MMUAddress[i] =

{
read; if gate Gi is ready for evaluation,
write; if output Kout is to be stored.

The MMU minimizes data collisions and ensures efficient memory access.
We also optimized the communication interface between the Garbler and

Evaluator engines. The AXI4-Stream interface was configured for direct
memory access (DMA), supporting bulk data transfers of garbled tables and
keys. Each packet is encrypted and includes a parity check P and 32-bit
cyclic redundancy check (CRC) to verify data integrity: P =

⊕n
i=1 biti.

7.4.5 Sub-circuit Assignment: Advantages and Pro-
cess

Efficient sub-circuit assignment and synchronization of the garbling and eval-
uation phases are essential for optimizing performance in our framework.
The scheduler dynamically allocates encryption keys to the garbling engines
and meticulously tracks the progress of each sub-circuit to prevent conflicts
and ensure smooth parallel execution. After the garbling phase, the gener-
ated garbled tables are transmitted to the evaluator engines, where they are
processed, and the results are evaluated to form the final output. Fig. 7.17 il-
lustrates the high-level flow of sub-circuit assignment and its integration into
the overall system. By distributing garbling tasks across multiple engines,
the scheduler not only enhances computational efficiency but also contributes
to the framework’s security.

168

A crucial security benefit of this structured approach lies in Garblet’s abil-
ity to enforce hardware-level isolation for security-critical tasks. By assigning
different tasks, such as encryption and evaluation, to separate chiplets, we
can physically separate sensitive operations (e.g., cryptographic key man-
agement) from non-critical ones (e.g., intermediate data storage and trans-
mission). This separation limits the attack surface and reduces the risk of
adversaries compromising critical components. For example, if an attacker
gains access to a chiplet responsible for handling non-sensitive operations,
such as managing communication between sub-circuits, they cannot directly
manipulate or observe the encryption keys managed by a separate, isolated
chiplet dedicated to a garbling engine. This hardware-level partitioning en-
sures that even if one component is compromised, the security of the overall
computation remains intact, as sensitive operations are shielded from poten-
tial attacks. This robust isolation, combined with efficient sub-circuit assign-
ment and synchronization, enables Garblet to perform secure computations
with minimal performance overhead, providing both security and efficiency
in a highly modular and scalable manner.

7.4.6 Chiplet-based GC Implementation Flow

To leverage the performance benefits of a chiplet-based implementation, we
integrate a garbling engine, our custom hardware OT module, and our evalu-
ator engine on chiplets. This integration enables us to perform complete GC
without relying on external parties as opposed to, e.g., HostCPU in Tiny-
Garble [362]. Fig. 7.18 illustrates the GC protocol distribution across two
chiplets to reduce communication overhead and enhance secure computation
efficiency. We utilize Xilinx UltraScale+ chiplets [181] that offer modular
platforms with high-speed interfaces such as AXI [178] and PCIe [180]. The
framework is implemented using Xilinx Vivado Design Suite [409] and Vi-
tis Unified Software Platform [410]. These tools optimize communication
latency between garbler and evaluator chiplets.

The garbling process is assigned to Chiplet A, while Chiplet B performs
the evaluation. This separation allows parallel operation with minimal de-
lays. Chiplet A garbles each Boolean gate in four main phases: (I) circuit
representation and key generation, (II) gate garbling, (III) pipelined garbling,
and (IV) inter-chiplet communication.
Circuit Representation and Key Generation. The function is repre-
sented as a Boolean circuit where each gate (AND, OR, XOR) corresponds to a

169

Figure 7.17: Sub-circuit assignment to garbling/evaluator engines.

logical operation in GC. The Key Generator module produces two crypto-
graphic keys per gate’s wire, one for ’0’ and one for ’1’;
Pipelined Garbling Process. Each gate is garbled in Chiplet A’s gar-
bling engine by creating a garbled truth table, where input wire keys are
encrypted. The garbling engine is pipelined to garble one gate per clock cy-
cle, ensuring continuous AES core operation. As gates are processed, garbled
tables, inputs, and output keys are stored in Chiplet A’s dual-port BRAM.
A memory management wrapper manages read/write operations to prevent
conflicts, enabling simultaneous garbling and data transmission to Chiplet B.
Inter-chiplet Communication. Communication between Chiplet A and
Chiplet B is established using AXI and PCIe protocols to handle large data
transfers efficiently. AXI enables direct memory access (DMA) for fast data
transmission, while PCIe supports high-bandwidth communication to reduce
delays in garbled table transfer. Chiplet B, configured as the evaluator,
uses our HW 1-out-of-2 OT protocol to securely select its input keys. Upon
receiving the garbled tables and keys, Chiplet B evaluates each gate using
the garbled tables. XOR gates are evaluated without encryption due to Free-
XOR optimization, while non-XOR gates are decrypted to reveal the correct
output keys.

170

Figure 7.18: The flow of GC implementation on the chiplet-based system.

Evaluation and Synchronization. Dual-port BRAM in Chiplet B man-
ages garbled tables and evaluation keys. Synchronization between Chiplets A
and B is handled via a handshake protocol, ensuring Chiplet B only begins
evaluation after receiving all required data. The Universal Chiplet Interface
Express (UCIe) protocol optimizes synchronization, reducing delays and im-
proving efficiency [180]. Once the evaluation is complete, Chiplet B decrypts
the final garbled output to obtain the output in plaintext.
System Optimization. Parameters such as clock speed and inter-chiplet
bandwidth are chosen for scalability to handle large computation efficiently [179,
178, 181].

Moreover, the chiplet-based architecture inherently supports scalability
by enabling the integration of additional garbling and evaluator engines as
required. By leveraging high-speed communication protocols such as UCIe
and AXI4-Stream, the framework ensures that communication overhead re-
mains manageable even with increasing computational demands. The mod-
ular design of the chiplets allows seamless addition of resources to scale the
framework for more complex applications, such as DL inference or large cryp-
tographic functions.

This makes the framework suitable for real-time applications where quick
and secure computations are crucial.

171

Table 7.5: Hardware resource utilization: comparison between Garblet and
implementations on monolithic FPGA [174, 156].

Resource
Garbling Engine Evaluator Engine

FASE [174] Garblet
Monolithic

(Resource Efficient)
Monolithic

(High Performance)
Garblet

LUT 31330 11729 1775 94701 5717
FF 11416 4103 1278 52534 2739

LUTRAM 553 93 N/R N/R 78
BRAM 68.5 103 0 0 95
DSP 0 1 0 0 1

7.4.7 Experimental Results

Experimental Setup

We evaluated Garblet using common benchmark functions such as AES,
multiplication, MAC, and an 8-bit adder cf. [174]. The experiments were
conducted in two distinct scenarios to compare performance and hardware
utilization. In the first scenario, a traditional server-client (personal com-
puter (PC)-FPGA) setup was used, where a PC with an Intel Core i7-7700
CPU @ 3.60GHz, 16 GB RAM, and Linux Ubuntu 20 acted as the garbler,
and the evaluator was implemented on an ARTIX7 FPGA board operating
at a clock frequency of 20 MHz. This configuration served as the baseline for
performance comparison. In the second scenario, Garblet was implemented
on Vertex UltraScale+ chiplets, where the garbler and evaluator were de-
ployed on separate chiplets. These chiplets were configured to achieve the
maximum possible frequency and bandwidth, with high-speed transceivers
operating at 32.75Gb/s and clock frequencies reaching up to 600 MHz.

To ensure consistency and minimize variability caused by external factors,
all execution times reported represent the average of five independent runs.
We explored the impact of resource allocation by testing configurations with
a single pair of garbling and evaluator engines and then scaling up to multiple
engines. This analysis allowed us to evaluate the trade-offs between hardware
costs and performance gains in both resource-efficient and high-performance
modes.

Hardware Resource Utilization Analysis

Table 7.5 compares the hardware resource utilization of Garblet with the
implementations on monolithic FPGA as in [174, 156]. Below is a concise
analysis highlighting the resource savings achieved by the Garblet.

172

Table 7.6: Hardware resource utilization of Garblet individual modules.

Resource
Garbling
Engine

Scheduler
Key

Generator
OT

Module
Evaluator
Engine

Combiner Controller

LUT 11729 5739 8088 4182 5717 47 2071
FF 4103 3693 4270 2237 2739 13 1629

LUTRAM 93 0 0 21 78 0 0
BRAM 103 109 57 2 95 5 15
DSP 1 0 0 0 1 0 0

Table 7.7: Execution time cost (in µs): comparison of common benchmarks
using baseline (not garbled), monolithic, and Garblet implementation.

Benchmark Baseline (µs) Monolithic (µs) Garblet (µs)
Garbling Time

Add 8 1 N/A 9.72 0.0173
Mult 1024 2048 N/A 3,910,000 30.1

MAC 32 1 N/A 828 9.31
AES 128 1 N/A 7,120 6.02

Evaluation Time
Add 8 1 N/A 0.619 0.00312

Mult 1024 2048 N/A 4,180 9.21
MAC 32 1 N/A 99.1 3.02
AES 128 1 N/A 599 1.02

Communication Time
Add 8 1 N/A 173,000 0.293

Mult 1024 2048 N/A 8,950,000,000 4,270
MAC 32 1 N/A 576,000 11.0
AES 128 1 N/A 4,910,000 219

Total Execution Time
Add 8 1 0.017 1,730 0.313

Mult 1024 2048 257.17 8,960,000,000 4,300
MAC 32 1 43.85 577,000 842
AES 128 1 11.83 4,910,000 226

The Garblet’s garbling engine reduces LUT utilization by 2.67× (from
31,330 to 11,729 LUTs) compared to FASE [174] due to its modular de-
sign and DSP offloading. The evaluator’s LUT usage shows a 16.57× im-
provement over the implementation of a monolithic FPGA, demonstrating
significant efficiency gains. The Garblet garbling engine also uses 4,103 FFs
compared to 11,416 FFs in FASE, achieving a 2.78× reduction, primarily due
to the efficient use of dual-port BRAMs, which minimizes the dependency
on FF, LUTRAM, Garblet utilizes only 93 LUTRAMs compared to 553 in
FASE, representing a 5.95× reduction attributed to the use of BRAMs for
memory storage. The BRAM usage in the garbling engine increased by 1.5×
(from 68.5 to 103 BRAMs), which is justified by the adoption of dual-port
BRAMs for efficient data handling between garbling and evaluation engines.
Each Garblet’s garbling and evaluator engine incorporates 1 DSP, offload-

173

Table 7.8: Execution time comparison (in µs) between monolithic and Gar-
blet implementation with one and three engines.

Metric 2-bit Adder Mult 1024 2048
Sub-circuits 3 2048

Garbling Time (µs)
Monolithic 14 3,910,000

Garblet (One Engine) 0.0591 30.1
Garblet (Three Engines) 0.0377 12.9

Evaluation Time (µs)
Monolithic 1.47 4,180

Garblet (One Engine) 0.00628 9.21
Garblet (Three Engines) 0.00412 4.66

Communication Time (µs)
Monolithic 473,000 8,950,000,000

Garblet (One Engine) 0.522 4,270
Garblet (Three Engines) 0.849 6,190

Table 7.9: Execution time and peak memory cost of the circuit decomposition
algorithm.

Benchmark # Sub-circuits Time (s) Memory Peak (MB)
2-bit Adder 3 3.1 394

Mult 1024 2048 2048 65901 11387

ing specific computational tasks and further reducing LUT utilization. This
trade-off is also justified by the significant reductions in computation time
and enhanced scalability, which are critical for large-scale secure computa-
tions. Table 7.6 shows the resource utilization of each module. The garbling
and evaluator engines can be instantiated multiple times as long as the plat-
form supports the resource requirements.

Execution Time Cost

Effect of Communication Reduction.
We compared the execution time cost of common benchmark functions

for implementations on baseline (not garbled), monolithic FPGA, and Gar-
blet. The Garblet framework was tested in two setups: one with a single
garbling and evaluator engine for resource efficiency, and another with mul-
tiple engines for better performance. Table 7.7 shows the execution times for
benchmarks like AES, multiplication, MAC, and an 8-bit adder.

Garblet reduces communication costs by up to 59, 000× compared to
monolithic implementations and improves performance by up to 5, 500× for
benchmarks like the 8-bit adder. When compared to Baseline implemen-
tations, which do not involve multiple parties and therefore do not require

174

garbling, evaluation, or communication, Garblet introduces additional over-
head for security. For the benchmarks, Garblet is about 15.65 times slower
for the 8-bit adder, 257 times slower for multiplication, 745 times slower for
MAC, and 47.8 times slower for AES.
Circuit Decomposition Execution Time: We evaluated the cost of our
circuit decomposition algorithm on two benchmark functions: (I) a 2-bit
adder and (II) Mult 1024 2048. The decomposition algorithm was imple-
mented on the PC. Note that this pre-processing is performed offline (before
running the GC protocol) and does not impact the framework’s online per-
formance. Multiple sub-circuits enable parallel computation, enhancing the
framework’s performance. Table 7.9 shows the execution time and peak
memory cost of the circuit decomposition algorithm. As the number of sub-
circuits increases, the execution time rises exponentially.

7.4.8 Acceleration Using Multiple Garbling/Evaluator
Engines

The Garblet benefits extend beyond communication cost reduction. Using
multiple garbling and evaluator engines, along with circuit decomposition,
enables parallel execution of computation tasks, significantly improving over-
all performance. We evaluated this performance gain by running the 2-bit
adder and Mult 1024 2048 benchmark functions using one and three gar-
bling/evaluator engines. Table 7.8 shows the execution time cost compar-
ison between monolithic Garblet with one and three engines. Using three
engines significantly reduces garbling and evaluation times for both bench-
mark functions. For the 2-bit adder, garbling time decreased by 1.57×,
and evaluation time reduced by 1.52×. Communication time also shows a
reduction, demonstrating minimal overhead with multiple engines. For the
Mult 1024 2048 benchmark, the benefits of parallel processing are even more
pronounced, with garbling time reduced by 2.34× and evaluation time by
1.98×. These results demonstrate that using multiple engines significantly
accelerates framework performance while minimizing communication costs.
Parallel processing of sub-circuits enables efficient handling of complex com-
putations, making it a viable solution for time-sensitive applications.

Garblet provides a robust hardware-based secure computation framework
that effectively mitigates side-channel vulnerabilities at the hardware level.
By leveraging chiplet-based architectures, dedicated OT modules, and opti-

175

mized evaluator engines, Garblet ensures that critical operations such as key
management and circuit evaluation remain isolated from adversarial influ-
ence [158]. This hardware-centric approach significantly reduces traditional
side-channel leakage, making Garblet resilient against power and EM at-
tacks [367, 101].

However, while Garblet secures execution on dedicated hardware, software-
based garbled circuit (GC) implementations remain vulnerable to another
class of attacks, timing SCA [42]. These attacks exploit variations in execu-
tion time to infer secret inputs, bypassing the cryptographic protections of
GC protocols [209, 42].

This is precisely where Goblin comes into play, exposing timing side-
channel vulnerabilities in software-based GC implementations [153]. Goblin
demonstrates that despite the theoretical security guarantees of GC-based
protocols, optimizations commonly used in software frameworks, such as free-
XOR [214] and half-gates [429], introduce subtle timing variations that leak
information about secret inputs. Unlike power or EM analysis, Goblin op-
erates in a purely software domain, requiring only a single execution trace
and no prior profiling of the system. This makes it a practical and highly
effective attack against GC implementations deployed in cloud or distributed
computing environments [317].

The timing leakage identified by Goblin highlights a critical security gap
in software-based MPC implementations, even those built on secure cryp-
tographic primitives. While hardware-based frameworks like Garblet can
enforce constant-time execution due to their dedicated architectural design,
software GC frameworks rely on compiler optimizations, memory access pat-
terns, and runtime behavior, which can lead to unintended variations in
execution time [143, 171].

In the next sections, we explore how Goblin exploits execution time vari-
ations, the adversary model it assumes, and its impact on widely-used GC
frameworks. By understanding these vulnerabilities, we can identify poten-
tial countermeasures to further strengthen software-based secure computa-
tion frameworks against timing SCA.

176

7.5 Timing Side-Channel Attacks on Secure

Computation

Timing side-channel vulnerabilities arise when the execution time of a soft-
ware program exhibits dependencies on secret variables, allowing an adver-
sary to infer confidential information based on variations in execution time.
These side-channel leaks can be broadly classified into two main categories:
instruction-related and cache-related timing channels.

The first category, instruction-related timing channels, occurs when the
execution path, including the number and type of instructions executed,
varies depending on secret-dependent conditions. In contrast, cache-related
timing side-channels stem from the interaction between memory accesses and
the cache subsystem, where differences in execution time are observed based
on whether a memory access results in a cache hit or a miss. For example,
while a cache hit may require only a few CPU cycles, a cache miss can impose
significant delays, potentially spanning hundreds of cycles cf. [408].

An adversary aiming to exploit timing-based vulnerabilities can manu-
ally analyze the source code, examining execution paths for discrepancies in
instruction execution time. A notable example of this can be seen in the
timing attack against the TinyGarble framework [361], where unbalanced if-
else branches led to observable execution time variations. By meticulously
inspecting the code line by line, an attacker can identify and leverage such
timing inconsistencies to extract sensitive information.

However, conducting manual timing analysis is a challenging and resource-
intensive process, requiring both an in-depth understanding of the source
code and the execution environment. To address this complexity, a variety
of automated tools have been developed to systematically analyze and detect
timing side-channel leaks in software implementations.

For this purpose, we employ a state-of-the-art tool that has been widely
referenced in the literature for timing side-channel analysis [191], namely
SC-Eliminator [408]. One of the key advantages of SC-Eliminator is its
capability to analyze C/C++ source code, making it particularly relevant
for evaluating existing garbling frameworks. This tool leverages the LLVM
compiler infrastructure to perform static analysis, systematically identifying
sensitive variables and pinpointing timing leaks based on their interactions
with the program’s execution structure. Given a program and a predefined
list of secret inputs, SC-Eliminator efficiently assesses the timing vulnerabil-

177

ities associated with different execution paths, assisting in the mitigation of
potential side-channel threats.

GC Tools. To investigate whether garbled circuit (GC) frameworks are
susceptible to timing SCA, we analyzed five widely used open-source tools
written in C and C++. These frameworks predominantly support the AES-
NI (Advanced Encryption Standard New Instruction) set, which is designed
to accelerate AES encryption operations on modern processors (for a detailed
analysis of these tools, see [160]). Leveraging AES-NI has significantly im-
proved the efficiency of GC computation, as it reduces the cost of performing
AES encryptions, a critical operation in garbling and evaluating circuits.

One of the fundamental libraries in this space is JustGarble [34], a frame-
work developed for garbling and evaluating Boolean circuits. Licensed under
the GNU GPL v3, JustGarble does not inherently support communication
or circuit generation, making it less suitable as a standalone general-purpose
secure computation framework. However, its highly optimized design has
made it a foundation for several other frameworks, including [362, 266, 194,
147, 144, 140].

The primary reason for JustGarble’s efficiency lies in its ability to per-
form only one AES invocation per garbled gate, making it significantly faster
than previous GC implementations [34]. This efficiency stems from JustGar-
ble’s use of cryptographic permutations, wherein fixed-key AES functions as
a public random permutation [34]. While this assumption has been debated
in prior works cf. [144, 147], JustGarble’s theoretical underpinnings and su-
perior performance have led to its widespread adoption in various secure
computation and GC-based MPC frameworks [266, 140].

Recognizing the strengths of JustGarble, Songhori et al. [361, 362] in-
troduced TinyGarble, a highly optimized and compact sequential garbling
framework. TinyGarble extends JustGarble’s capabilities by integrating cir-
cuit synthesis and compression techniques, making it directly applicable in
practical MPC applications [160]. Its workflow consists of three primary
steps: (1) converting a function defined in Verilog into a netlist representa-
tion, (2) translating the netlist into a custom SCD, and (3) securely evalu-
ating the resulting Boolean circuit using a garbled circuit protocol.

Compared to JustGarble, TinyGarble represents a significant improve-
ment as it incorporates recent protocol optimizations and circuit synthesis
advancements. However, despite its enhanced flexibility and suitability for

178

hardware circuits, modifications introduced in TinyGarble have inadvertently
led to timing side-channel vulnerabilities. These vulnerabilities, which arise
from imbalanced execution paths.

In contrast to TinyGarble, which is based on Verilog, Obliv-C is an exten-
sion of C designed to support GC-based secure two-party computation [427].
Obliv-C extends the standard C programming language by introducing the
obliv qualifier, which can be applied to variables and functions. This quali-
fier enforces strict typing rules, ensuring that secret values remain confiden-
tial unless explicitly revealed. Within an obliv block, all operations execute
in a manner that conceals conditional branches and control flow dependen-
cies, reducing leakage risks cf. [427, 426].

Beyond its inherent security properties, Obliv-C facilitates the develop-
ment of modular secure computation libraries, making it a versatile tool for
a wide range of privacy-preserving applications. It has been employed in
various domains, including privacy-preserving linear regression [115], decen-
tralized certificate authorities [193], collaborative ML models [382], secure
classification of encrypted emails [148], and privacy-preserving stable match-
ing protocols [98].

Apart from JustGarble, TinyGarble, and Obliv-C, we also examined two
additional C++-based frameworks: EMP-toolkit [246] and ABY [95]. EMP-
toolkit provides a comprehensive suite of MPC frameworks, supporting effi-
cient execution of circuit-based protocols through integrated circuit genera-
tion and cryptographic libraries. Meanwhile, the ABY library is designed to
enable seamless switching between multiple secure computation paradigms,
including optimized implementations of Yao’s GC, Boolean sharing, and
arithmetic sharing. This flexibility allows developers to mix protocols to
optimize computation cost and performance.

By evaluating these diverse GC frameworks, we aim to assess their sus-
ceptibility to timing SCA and understand how their architectural and op-
timization choices impact security. The following sections will delve deeper
into potential vulnerabilities within these frameworks and discuss counter-
measures to mitigate timing-related leaks.

Our Observations. As discussed earlier, we initiated our analysis by
assessing the feasibility of mounting a timing SCA against the aforementioned
GC frameworks. In such an attack scenario, an adversary seeks to exploit
potential imbalances in conditional branching, particularly within if-else

179

Table 7.10: The number of leaky IF conditions (IF) in various frameworks
(for a detailed report, refer to Appendix A).

Framework IF

TinyGarble [361] (half-gate) 4

TinyGarble [361] (free-XOR) 7

JustGarble [187] 11

EMP-toolkit [246] 0

Obliv-C [426] 4

ABY [95] 0

statements. One primary concern arises from the fact that free-XOR and
half-gate optimized Yao’s GC protocols execute different operations when
generating garbled inputs. If these sensitive operations are implemented
using non-constant-time execution or branch-dependent assignments, they
could introduce timing variations that leak secret-dependent information.

To evaluate this risk, we applied SC-Eliminator [408] to five widely used
GC frameworks: TinyGarble [361], JustGarble [187], EMP-toolkit [246],
Obliv-C [426], and ABY [95]. The results of this analysis, summarized in
Table 7.10, reveal the number of conditional branches (if-else statements)
flagged as potential sources of timing leakage.

Upon closer examination of the flagged branches, we identified instances
where garbled input generation was performed in a secret-dependent manner.
Specifically, within certain frameworks, unbalanced if statements were found
in the garbled input computation, meaning the execution path varied based
on the secret data. This finding strongly suggests that an attacker could
successfully exploit these timing variations to infer sensitive information.

According to the results presented in Table 7.10, EMP-toolkit [246] and
ABY [95] exhibited no leaky if statements. However, it is crucial to empha-
size that while SC-Eliminator did not detect branch-based vulnerabilities in
these frameworks, the absence of such findings does not categorically rule
out other forms of timing-based attacks. For instance, vulnerabilities may
still arise due to indirect sources such as memory access patterns or microar-
chitectural behaviors, which were beyond the scope of SC-Eliminator’s static
analysis.

Building upon these observations, we introduce Goblin, an attack frame-
work that leverages timing side-channel leakage originating from existing

180

unbalanced if statements in GC frameworks. The following sections will
elaborate on the methodology of Goblin and demonstrate its efficacy in ex-
ploiting timing vulnerabilities in practical settings.

7.5.1 Goblin and Its Building Blocks

Goblin operates through a structured sequence of steps designed to exploit
timing side-channel vulnerabilities in GC frameworks. The primary steps of
its attack flow are as follows:

(1) The first phase involves populating the cache with junk data using a
dedicated junk generator (JG). This process is intended to force the eviction
of the garbler’s secret from the cache, thereby increasing the CPU core’s ac-
cess time when retrieving the global secret (R) from memory. By doing so,
Goblin can capture execution timing variations corresponding to the evalua-
tion of gates connected to input wires (i.e., gates located in the input layer).
It is important to note that for certain GC frameworks, Goblin remains ef-
fective even without leveraging timing variations caused by cache effects, as
further discussed in Appendix B.

(2) The second phase consists of measuring execution time on the CPU.
Specifically, this includes recording the duration required to generate the
garbler’s token, which directly correlates with the input size. This timing
data serves as a crucial element in uncovering variations that may reveal
sensitive computations.

(3) In the final phase, Goblin reconstructs the garbler’s secret (i.e., the
garbler’s input) by pre-processing the collected CPU cycle measurements and
applying a clustering algorithm. This step enables the adversary to systemat-
ically infer confidential input values by analyzing subtle timing discrepancies.

By executing this sequence of operations, Goblin effectively exploits tim-
ing side-channels inherent in GC implementations, demonstrating the need
for robust countermeasures against such vulnerabilities.

7.5.2 Our Eviction Method: Junk Generator

In our threat model, we assume that the server and computing parties oper-
ate independently, meaning that the adversary does not possess knowledge
of the cache slice function or the victim’s physical memory addresses. Con-
sequently, employing a static eviction set and a fixed access pattern strategy
is infeasible [141].

181

Additionally, implementing a dynamic eviction set with a static access
pattern requires prior knowledge of the target’s cache replacement policy,
which is generally unavailable to the adversary [141]. Therefore, our Junk
Generator (JG) follows a dynamic eviction set and dynamic access pattern
strategy [141]. In essence, our JG extends the dynamic eviction methodology
introduced in [141], improving its efficiency and adaptability.

Our attack shares similarities with Evict+Time attacks described in prior
literature [297]. Specifically, JG continuously accesses memory by performing
frequent read and write operations, similar to [285]. However, unlike prior
approaches, where the adversary must first determine which critical memory
regions are accessed during encryption, Goblin bypasses this step. Instead,
it directly exploits the timing variations between garbling a bit value of “1”
versus “0,” allowing the adversary to infer input bits without additional
analysis.

To amplify this timing difference, the JG algorithm recursively generates
eviction sets and performs randomized memory accesses. While this approach
requires multiple eviction tests, it operates with minimal system knowledge,
enabling automated attacks on previously unknown architectures. Moreover,
it is computationally more efficient than the static eviction set combined with
a dynamic access pattern strategy [141].

Although cache eviction can be achieved by directly reading from a cache
line [285], we opted to generate junk dynamically to circumvent CPU memory
management constraints [141].

The Junk Generator (JG), as outlined in Algorithm 13, operates as fol-
lows. The iteration parameter n determines the number of cell indexes in the
array that are summed and used to update another array cell. This process
continues iteratively until reaching the last index, (Size− 1). At this stage,
JG generates new random values and repeats the process indefinitely, leading
to cache disruption and potentially evicting critical data, such as the global
parameter R utilized in free-XOR [214] and Half-Gates [428] optimizations.

While simple For loops could be employed for junk generation, we imple-
mented a recursive function to allow indefinite junk creation, accommodating
the unpredictable duration of the circuit garbling process.

7.5.3 Measuring Execution Time on CPUs

Once the Junk Generator (JG) enhances the variation in execution time based
on input-dependent computations, the next step is to measure this time pre-

182

Algorithm 13: Junk Generator Algorithm
Input: Size = size of cache/64
Output: Junk ← Array[Size] and n← 1
Function JG(n):

while User Interrupt do
if n == 1 then

Seed← t time ;
Junk[0 . . . 3]← rand(Seed) ;
n← n+ 1 ; // Initiate recursive algorithm

return JG(2) ;

else if n == (Size− 1) then
return JG(1) ;

else if n ̸= (Size− 1) and n ̸= 1 then
i← n ;
for i ≤ (Size− n− 1) do

Junk[i+ n+ 1]← Junk[i] + Junk[n] ;

n← n+ 1 ;
return JG(2) ;

cisely. According to Martin et al. [250], three primary sources can be utilized
for measuring time without directly interfering with the execution of the
target software cf. [243]: (1) Internal hardware-based time sources, such as
timestamp counters that provide fine-grained cycle-level timing information.
(2) External time sources, including external hardware components that trig-
ger interrupts at specific intervals to measure elapsed execution time indi-
rectly. (3) Virtual clock implementations, which leverage shared memory in
multi-processor systems to construct a consistent clocking mechanism [297].

Without loss of generality, we focus on using an internal hardware time
source, specifically the rdtsc instruction, which provides direct access to the
CPU’s timestamp counter (TSC). The rdtsc instruction is an x86 assem-
bly command that reads the current value stored in the timestamp counter,
which is updated with each CPU clock cycle. Due to its high granularity,
the resolution of rdtsc is determined by the inverse of the CPU frequency,
making it capable of measuring execution time with nanosecond precision on
modern processors.

In general, the TSC register is shared across different user privilege lev-
els [243], meaning it can be accessed under the following conditions: (1) A
privileged or non-privileged user who has direct control over the CPU exe-
cution. (2) A service provider operating in a cloud environment where the
processor is shared with multiple tenants, including the victim [250]. (3) A
virtual machine (VM) user, either with privileged or non-privileged access,

183

who runs a process on a shared processor where the victim’s computations
are also being executed (e.g., cross-VM attacks) [243].

Consequently, an attacker may have different levels of access to the CPU
running the garbling scheme. This access could occur directly on the same
processor where the secure computation is performed, on a cloud provider’s
system where the execution environment is shared, or in a cross-VM setting
where multiple tenants share CPU resources. The key distinction between
privileged and non-privileged attackers is that the former can precisely con-
trol the garbler’s execution and introduce intentional interruptions, whereas
the latter cannot directly halt or manipulate execution flow. However, even
an unprivileged attacker can still infer execution timing by monitoring when
the garbling process begins or by leveraging external triggers, such as cache-
based side-channel signals [343]. Once the adversary detects the start of the
garbling process, they can align the collected timing traces accordingly, as
demonstrated in prior works [235].

For the purposes of our attack, and in line with previous timing-based
side-channel methodologies [263, 186], we assume that timing measurements
are already aligned. To validate our approach, we have instrumented the
source code of publicly available GC frameworks by inserting the rdtsc in-
struction before and after the core garbling function. By computing the
difference between these timestamps, we accurately determine the execution
time of the garbling process. This approach ensures precise timing measure-
ments and serves as the foundation for further analysis of timing leakage in
secure computation frameworks.
Resolution of timing measurements. The timestamps retrieved via the
rdtsc instruction generally provide a resolution within the range of 1 to 3
CPU cycles on modern processors cf. [234]. For instance, on AMD processors
up to the Zen microarchitecture, it is possible to achieve cycle-accurate res-
olution. However, more recent AMD architectures have significantly lowered
the resolution, as the timestamp counter register is only updated every 20 to
35 cycles. A contrasting example can be seen in Intel Core i7− 7700 proces-
sors, which were used in this study, where the rdtsc register is updated on
every cycle [183].

Although one might assume that reducing the resolution of the timestamp
counter makes mounting attacks more challenging, Goblin remains unaffected
by this limitation. The reason is that Goblin primarily relies on measuring
the difference between two consecutive readings rather than absolute times-
tamps. Since both readings share the same resolution, the attack remains

184

effective . Unlike other timing attacks that rely on repeated measurements
and averaging due to variations in rdtsc resolution, Goblin does not require
multiple executions. Instead, it directly exploits the variations observed from
a single execution, leveraging the differences between timestamps.

Additionally, it is crucial to emphasize that Goblin is a single-trace attack.
Due to the gate-by-gate execution model in garbled circuit (GC) frameworks,
the timing differences captured from rdtsc naturally form a sequence of
timestamps corresponding to individual gate operations. This granularity al-
lows the attack to infer secret-dependent variations efficiently. Furthermore,
while this study focuses on a timing attack using rdtsc, it is important to
note that alternative methods for obtaining precise timing information could
also be employed to achieve similar results.

7.5.4 Recovering Garbler’s Input

Counting the Gates in the Input Layer
As outlined in our adversary model, we assume that the attacker is nei-

ther the garbler nor the evaluator, meaning they lack prior knowledge about
the circuit structure, the number of input gates, or the gate types in the
input layer. Goblin exploits this lack of knowledge by recovering such in-
formation through an analysis of the execution patterns of GC frameworks.
Here, we describe how Goblin achieves this when JustGarble is employed
as the garbling framework. JustGarble is particularly relevant due to its
widespread adoption in various GC-based systems and its fundamental role
in the core of several other garbling frameworks, including those evaluated
in our study [362, 427].

Listing 1 provides a high-level description of JustGarble’s primary func-
tions. Within the listing, variables such as NF, LF, GT, IF, INL, WL, GC, and
OL (defined in Lines 1–9) correspond to the number of fan-outs, the location
of fan-outs, gate types, input fan-out values, initial input values, wire labels,
the garbled circuit, and output labels, respectively.

According to JustGarble’s protocol flow (as outlined in Listing 1), the
first step in the garbling process involves constructing the garbler’s labels for
logical zero and one values (IL) using the createNewWire function (Listing 1,
Line 5). Once these labels are initialized, the parser function—responsible for
managing circuit information—is executed. Specifically, the createInputLabels
function (Listing 1, Line 3) processes the Simple Circuit Description (SCD)
file along with the g init files, both of which store crucial details about the

185

1 de f JustGarble (g i n i t , SCD) :
2 NF, LF, GT = createNewWire (g i n i t , SCD) #Pasrse s the c i r c u i t , l o c a t e

the fan−outs , and gene ra t e s wire l a b e l s .
3 IF , INL = crea te InputLabe l s (NF, LF) #F i l l s tokens to input fan−outs (

c a l l e d twice per ga rb l e r input) .
4 GC, OL, TT = ga rb l eC i r c u i t (IF , IFS , WL, GT) #Generates garb led t ab l e s

and Garbled output tokens .
5 de f createNewWire (g i n i t , SCD) :
6 f o r i in SCD [0] : #f i r s t l i n e o f SCD, which conta in s the in fo rmat ion

about input l ay e r gate s
7 IF [i] [0] = randomBlock () ;
8 IF [i] [1] = xorBlocks (R, IF [i] [0]) ;
9 de f g a r b l eC i r c u i t (IFS , WL, GT) :

10 R = AESEcbEncryptBlks (AES Key)
11 i f (IFS == known) :
12 GC, OL = HalfGarbleGate (GT, IF)
13 r e turn GC, OL
14 e l s e : #(IFS == s e c r e t) :
15 i f (GT == XORGATE) :
16 OL = XorBlock (IFS , R) #f r e e−XOR opt imiza t i on
17 e l s e : #i f (GT == ANDGATE)
18 mask1 , mask2 , mask3 , mask4=AESEcbEncryptBlks (AES Key , 4)
19 #AND encrypt ions
20 OL = XorBlock (mask1 , mask2)
21 i f (IFS == 1) :
22 OL = XorBlock (OL , R) ;
23 GC = [XorBlock (OL, mask3) , XorBlock (OL, mask4)]
24 i f (g a t e l o c a t i o n i s in i npu t l a y e r) : #Generates a s s o c i a t e ga rb l e r tokens

to be t r a n s f e r r e d to Evaluator .
25 i f (g i n i t == 0) :
26 TT = IF ;
27 e l s e :
28 TT = xorBlocks (R, IF) ;
29 r e turn GC, OL, TT

Listing 1: Protocol flow of primary functions of JustGarble.

circuit structure and the garbler’s input values.
Through this parsing operation, the function extracts information about

the circuit topology (GT) and determines the placement of input fan-in and
fan-out gates (LF and NF), based on the data stored in the g init file. For
every input wire, createInputLabels is invoked twice—once to generate
the label for the garbler and once for the evaluator. Consequently, the total
number of calls to createInputLabels is twice the number of gates present
in the input layer.

At this stage, Goblin begins counting the number of times createInputLabels
is called, inferring that the number of input-layer gates is equal to half of the
total function calls. Once this phase is completed, JustGarble proceeds to
garble the circuit, executing the garbleCircuit function (Listing 1, Line 9)
to process each gate, beginning with those in the input layer. Since the gar-

186

bler’s and evaluator’s inputs are first mapped onto these gates before the rest
of the circuit is processed, Goblin is able to determine execution timing at
this stage. By monitoring the execution cycles, Goblin effectively counts the
CPU cycles associated with each gate in the input layer, thereby extracting
critical insights about the garbler’s input.

This method allows Goblin to infer secret-dependent operations in JustGarble-
based GC frameworks without requiring direct access to the circuit descrip-
tion or runtime information. The next phase of Goblin involves leveraging
this timing information to further refine the attack and recover the garbler’s
actual input values.
Goblin Against Free-XOR Optimization.

When the framework initiates the garbling process, it sequentially gener-
ates the output labels (OL) and constructs the corresponding garbled tables
(GT) based on the order specified in the SCD file. Similar to many modern
garbling frameworks, JustGarble employs the free-XOR optimization tech-
nique to efficiently generate garbler tokens for input values of 1. However,
this optimization introduces a critical security weakness that Goblin exploits.

In particular, when free-XOR is enabled, the GarbleCircuit function
(Listing 1, Line 9) entirely bypasses the instructions between Line 11 and
Line 14 in Listing 1. Consequently, regardless of whether an input is public
or secret, the framework first verifies the gate type (GT) and treats all inputs
as secret. If the gate type corresponds to an XOR-based operation—including
gates categorized as INV, XOR, and XNOR in GC protocols—the function com-
putes the output label by simply XORing the labels for logical values 0 and
1 (Listing 1, Line 16). In contrast, for non-XOR gates, such as AND, OR, and
their negated forms, the function constructs the output label by performing
a series of cryptographic encryptions (Listing 1, Lines 18 to 22).

A closer inspection of the garbling function reveals that in the final stage
of encryption (Listing 1, Line 14 and between Lines 25 and 28), if the garbler’s
input value is “1”, the function executes an additional encryption, performs
an extra memory access, and carries out one additional XOR operation. This
results in a measurable dependency between execution time and input values,
a vulnerability that Goblin is designed to exploit.

More specifically, when garbling AND-type (non-XOR) gates—including
AND/NAND, OR/NOR, ANDN, ORN, NANDN, and NORN—the presence of an unbal-
anced if condition results in a longer execution time for cases where the
input value is “1”. The primary cause of this time discrepancy is the in-
creased number of memory accesses associated with these operations.

187

Goblin capitalizes on this execution time variance to infer the garbler’s
input value. If the global constant R remains available in the L1 cache, the
timing difference between garbling input values 0 and 1 is relatively minor,
often overshadowed by the overhead of encryption itself. However, Gob-
lin amplifies this difference using its Junk Generator (JG). The JG process
actively fills the cache with junk data in parallel with the execution of the
createNewWire function (Listing 1, Line 5). This forced cache eviction forces
the CPU to reload R from RAM into the L1 cache, artificially increasing the
execution time discrepancy between generating tokens for input values 0 and
1.

To maximize the effectiveness of the JG, Goblin first determines the exact
CPU core and thread executing the garbling process by calling the LSCPU

instruction. Subsequently, it attempts to assign the JG task to the same
thread executing the garbling function. If direct assignment to the same
thread is not possible, the JG is at least scheduled on the same CPU core to
maximize cache contention.

It is important to note that no special privileges or elevated access rights
are required to execute the JG alongside the garbling process. The JG’s
primary operation involves filling the shared L3 cache, which is accessible
to all processes running on the same processor. However, when assigned to
the same core as the garbling process, JG operates even more efficiently by
filling the L1 and L2 caches first, thereby accelerating cache evictions and
reducing measurement errors. This strategic placement further amplifies the
timing differences exploited by Goblin, increasing the precision and SR of
the attack.
Goblin’s Attack on Half-Gate Optimization. Although JustGarble
does not inherently support half-gate optimization, later frameworks such as
TinyGarble and Obliv-C have incorporated it. Despite this addition, Goblin
remains effective against these frameworks. When half-gate optimization
is enabled, the function HalfGarbleGate (refer to Listing 2) is invoked by
GarbleGate.

In cases where the input value (IF) is zero and the gate type (GT) cor-
responds to ANDGATE, the function skips the garbling operation and directly
assigns a constant value to OL, thereby reducing execution time compared to
the garbling process for an input value of one or other gate types. However,
when the input value is one, the function proceeds with encryption (Listing 2,
line 11), introducing an asymmetric execution path due to the conditional
if statement. This creates a dependency between execution time and the

188

1 de f HalfGarbleGate (GT, IF) :
2 R = AESEcbEncryptBlks (AES Key)
3 mask1 , mask2 = AESEcbEncryptBlks (AES Key , 2)
4 i f (IF [0] == 0) :
5 i f (GT == ANDGATE) :
6 OL = mask1 #XorBlock (mask1 , 0)
7 e l s e : #i f (GT == XORGATE) :
8 OL = XorBlock (mask1 , IF [1])
9 i f (IF [0] == 1) :

10 i f (GT == XORGATE) :
11 OL = mask1 #XorBlock (mask1 , 0)
12 e l s e : #i f (GT == ANDGATE) :
13 OL = XorBlock (mask1 , R)
14 GC = XorBlock (OL, mask2)
15 i f (g a t e l o c a t i o n i s in i npu t l a y e r) : #Generates a s s o c i a t ed ga rb l e r

tokens to be t r a n s f e r r e d to Evaluator .
16 i f (g i n i t == 0) :
17 TT = IF ;
18 e l s e :
19 TT = xorBlocks (R, IF) ;
20 r e turn GC, OL, TT

Listing 2: HalfGarbleGate function flow.

input value, making it susceptible to timing side-channel analysis.
As with free-XOR optimization, Goblin exploits the execution time varia-

tions caused by the unbalanced if conditions present in Listing 2, specifically
on lines 3 and 8.

Following this stage, the remaining steps are not relevant to Goblin, as
they do not reveal any further information about the secret (i.e., the garbler’s
input). The extracted information is already sufficient to mount the attack.
Consequently, Goblin can proceed to the offline phase to complete the attack.
Pre-processing the Acquired CPU Cycles. As previously discussed,
when utilizing free-XOR optimization, an attacker anticipates a noticeable
difference in the CPU cycle count between INV, XOR, and XNOR gates versus
other gate types, such as AND/NAND, OR/NOR, ANDN, ORN, NANDN, and NORN

gates.
This substantial discrepancy arises because, in free-XOR optimization,

XOR-type gates are garbled using a simple XOR operation, which incurs
minimal computational cost and requires only a few CPU cycles. In con-
trast, garbling other gate types, such as AND, necessitates additional opera-
tions such as memory reads/writes and cryptographic key generation. These
additional steps introduce extra memory accesses, significantly increasing the
overall CPU cycle count. This phenomenon is evident when analyzing the
computational structure of these gates.

189

When applying clustering techniques to infer the garbler’s input in a
non-profiled manner, this discrepancy causes the gate types themselves to
dominate the clustering centroids rather than the input values. To mitigate
this issue, Goblin first categorizes CPU cycle measurements into subgroups
corresponding to the distinct gate types present. Specifically, it separates
AND-type gates (AND/NAND, OR/NOR, ANDN, ORN, NANDN, and NORN) from XOR-
type gates (INV, XOR, and XNOR, collectively referred to as XOR gates) based
on the median CPU cycle values.

Following this, each subgroup undergoes z-score normalization to stan-
dardize CPU cycle distributions across different gate types. Finally, the nor-
malized data is recombined while preserving the original execution order of
captured CPU cycles. By normalizing cycle counts, Goblin effectively reduces
the disparity between XOR and AND-type gate computations, improving the
SR of the attack.

The pre-processing step becomes more intricate when half-gate optimiza-
tion is enabled. Our analysis reveals that in addition to XOR gates display-
ing significantly lower CPU cycle counts, OR/NOR gates exhibit a distinct,
disproportionate increase in execution time. This behavior stems from the
inherent structure of gates whose truth tables contain an odd number of ones,
such as AND, NAND, OR, and NOR.

Fundamentally, these gates can be expressed as:

G : (va, vb)→ (αa ⊕ va) ∧ (αb ⊕ vb)⊕ αc

where va and vb represent logical input values, while αa, αb, and αc are
predefined constants [428].

For an AND gate, all α values are set to zero, whereas for an OR gate, they
are set to one. Consequently, it is unsurprising that CPU cycle measurements
for garbling OR/NOR gates form an entirely distinct cluster from the rest.

Additionally, another notable observation is that garbling OR/NOR gates
with an input of ”0” generally takes longer than garbling AND/NAND gates
with an input of ”1”. This timing discrepancy further reinforces Goblin’s ca-
pability to differentiate secret-dependent computations, thereby facilitating
precise key recovery.

Therefore, unlike the free-XOR optimization case where AND/NAND
and OR/NOR gates can be classified under the same category, distinguishing
between AND/NAND gates with an input of “0” and OR/NOR gates with an
input of “1” becomes challenging. This overlap leads to inaccurate clustering,

190

as the algorithm incorrectly groups both types into a single cluster, even
though they should be separated based on their distinct input values.

To address this issue, Goblin introduces an additional data scaling tech-
nique before normalization, ensuring that the patterns align with those of
other gate types (i.e., higher CPU cycles for input 1). The first step, sim-
ilar to the free-XOR scenario, involves partitioning the collected CPU cy-
cles {ci}ni=1 into subsets corresponding to different gate types: XOR/XNOR,
AND/NAND, and OR/NOR.

To achieve this, Goblin calculates the 66th percentile of all elements in
{ci}ni=1 and assigns those exceeding this threshold to the OR/NOR sub-
set, denoted as cOR. The remaining elements are then further divided into
AND/NAND and XOR/XNOR subsets using the same methodology as in
the free-XOR case. Specifically, the larger elements from the remaining set
{ci}ni=1 \ cOR are assigned to the AND/NAND subset (cAND), determined by
the median value. The remaining values are allocated to the XOR/XNOR
subset.

Once the subsets are defined, Goblin applies a transformation of the form
ti = aci + b for all ci ∈ cOR, where the coefficients a and b are computed as:

a =
Max(cAND)− c̄AND

Max(cOR)− c̄AND

, b = c̄AND − a · c̄OR,

where Max(·) represents the maximum value in a subset, and c̄ denotes
the average of the subset. This transformation ensures that the CPU cycle
distribution for OR/NOR gates aligns more closely with the AND/NAND
category.

After this transformation step, normalization is performed following the
same procedure as in the free-XOR case, ensuring consistency in data repre-
sentation and improving clustering accuracy.
Extracting garbler’s input through clustering. Once the pre-processed
data is ready, Goblin proceeds with the clustering algorithm to identify each
garbler’s input bit.

Goblin employs clustering for two primary reasons: (1) there is no clear
distinction in CPU cycle counts between XOR and XNOR gates when pro-
cessing input values of zero and one, leading to an overlap, and (2) there is
no predefined reference for CPU cycles corresponding to input zero and one
for each gate, requiring a comparative analysis between collected values.

Since Goblin applies normalization to the CPU cycle data, the dominance

191

of gate types in centroid formation is eliminated. As a result, Goblin clusters
the CPU cycles into just two categories, each corresponding to an input value
of zero or one, regardless of the gate type.

To extract the input bits, Goblin tracks the maximum CPU cycle value,
Max({ci}ni=1), before normalization. Once the clustering process concludes,
all members of the cluster containing this maximum value are labeled as “1”,
indicating that the garbler’s input bit is “1”. Consequently, the other cluster
comprises ci values corresponding to the garbler’s input bit “0”.

7.5.5 Performance Metric

Let ci represent a leakage measurement, specifically the number of CPU
cycles, corresponding to a garbler input x = x1 · · ·xn, where n denotes the
number of bits associated with n wires forming the garbler’s input to the
circuit. For example, in a garbled 128-bit AES design, n = 128.

To assess the effectiveness of our attack, we compute its SR in recovering
the garbler’s input from a single trace {c}ni . Since Goblin operates as a non-
profiling attack, it does not rely on a leakage profile, distinguishing it from
profiling attacks that require pre-collected leakage distributions.

For classification, we employ the k-means clustering algorithm as a dis-
tinguisher, where each observation ci is assigned to either cluster p0 or p1,
representing input bit xi being “0” or “1”, respectively. The SR is formally
defined as:

SR :=
∑

j∈{0,1}

n∑
i=1

Pr(ci ∈ pj | xi = j). (7.4)

In essence, SR quantifies the proportion of correctly recovered bits out
of the total n bits in the garbler’s input. This definition aligns with the
standard evaluation methodology in side-channel analysis literature [369].
Specifically, we consider the SR of order 1, which represents the probability
that the correct key is ranked first.

7.5.6 Experimental Results

We evaluated the JustGarble, TinyGarble, and Obliv-C frameworks, all pub-
licly available through their respective GitHub repositories [187, 361, 426].
The garbler and evaluator codes were executed on two separate systems run-
ning Linux Ubuntu 20, each equipped with 16 GB of memory and an Intel

192

Core i7-7700 CPU operating at 3.60 GHz. These systems were interconnected
via a LAN cable.

Since the garbling process can access the global secret value R at any point
during execution, we ensured that the Junk Generator (JG) was initiated as
soon as the garbling process began. This maximized the likelihood that the
CPU would fetch R from RAM into the L1 cache. The garbling process’s
start time was identified using non-privileged CPU instructions that indicate
active applications on each core. Additionally, to enhance effectiveness, we
assigned the JG to the same CPU core responsible for generating GC on the
garbler system.

To collect execution traces consisting of multiple time stamps, we em-
ployed the rdtsc instruction, as detailed in Section 7.5.3. The collected CPU
cycle data was subsequently analyzed using the k-means clustering algorithm
implemented in MATLAB 2021.

Results for Benchmark Functions

To assess the effectiveness of Goblin, we targeted widely-used benchmark
functions, including 128-bit AES, 288-bit SHA3, 256-bit Multiplier, 128-bit
Summation, and 128-bit Hamming, garbled using JustGarble [187], Tiny-
Garble [362], and Obliv-C [426]. Additional results for various input sizes
can be found in Section 7.5.8.

For evaluating the attack’s performance, we calculated the SR by applying
different garbler inputs and analyzing the results. Due to the infeasibility of
testing all possible input combinations (e.g., a 256-bit Multiplier requires 2256

attack runs), we randomly selected 1000 inputs for testing Goblin. For each
selected input, a single trace containing multiple timestamps was captured.

In the k-means clustering algorithm, centroids were initialized at 100
different starting values, and the final clustering result was determined based
on the least within-cluster sum of point-to-centroid distances.

Figure 7.19 illustrates the SR when free-XOR or half-gate optimization
is enabled. The red lines within the box plots represent the average SR
achieved against each benchmark function.

As observed in Figure 7.19(a), the attack demonstrated a higher SR
against the AES benchmark compared to, for instance, the 256-bit Multi-
plier. This outcome can be attributed to three primary factors:

First, since only 1000 inputs were tested, variations in results are expected
due to statistical fluctuations.

193

(a) (b)

(c) (d)

Figure 7.19: SR of Goblin for 1000 randomly chosen inputs applied to GC
generated by TinyGarble [362] with (a) free-XOR, (b) half-gate optimiza-
tions, (c) JustGarble [187], and (d) Obliv-C [426].

Second, the input layer of the 256-bit Multiplier contains a higher propor-
tion of XOR gates compared to AES. This makes the attack more challenging,
as XOR gates exhibit only a subtle difference in execution time between input
values “0” and “1”.

Third, it is important to note that Goblin operates as a non-profiling,
single-trace attack. This means that for each gate—and consequently for
each input bit—only a single timing measurement is obtained. As a result,
an increase in the number of input bits enhances Goblin’s ability to accurately
determine their values.

Compared to Figure 7.19(a), Figure 7.19(b), which corresponds to the
half-gate optimization, exhibits an overall reduction in SR across the same
benchmark functions. This decrease can be attributed to the increase in the
number of gate types that need to be identified for the same number of input
bits and observations.

Nevertheless, even for circuits incorporating diverse gate types, such as
AES, Goblin achieved an average SR exceeding 90%, demonstrating that
variations in gate types do not significantly degrade its effectiveness (see
Appendix D).

The presence of outliers in Figure 7.19 is primarily due to the imperfect

194

(a) (b)

(c) (d)

Figure 7.20: SR of Goblin against benchmark functions for a range of input
bits garbled by TinyGarble [361] with (a) only free-XOR optimization, (b)
half-gate protocol, (c) JustGarble [187], and (d) Obliv-C [426] for 1000 ran-
domly chosen inputs.

process of filling the L3 cache with junk. When R remains available in the
L1 cache of the garbler’s core, the execution time difference between garbler
token generation for input “0” and “1” diminishes.

However, such outliers are infrequent, occurring in only 11 out of 1000
experiments, indicating that the Junk Generator (JG) introduces only a mi-
nor error. Even in these rare cases, Goblin successfully revealed the garbler’s
input with an SR ranging between 60% and 100%.

7.5.7 Scalability of Goblin

To evaluate the scalability of Goblin, we launched the attack against three
benchmark functions—MULT, SUM, and Hamming—across a range of input
sizes from 128 to 1024. The results are presented in Figure 7.20, where
Figure 7.20(a) and Figure 7.20(b) illustrate the outcomes for free-XOR and
half-gate optimizations, respectively.

As observed in Figure 7.20(a), increasing the input size consistently im-

195

proves the minimum and average SR across nearly all cases. This enhance-
ment can be attributed to the fact that larger input sizes provide Goblin with
a broader dataset for clustering, resulting in more observations to compare
against each other.

Similar to previous experiments, outliers are present in Figure 7.20. A
natural question arises: Is it possible to launch Goblin without employing
the Junk Generator (JG) to reduce the number of outliers? To address this,
we conducted experiments and found that for JustGarble [187] and Obliv-
C [426], the SR drops significantly—approaching 50%—when JG is disabled,
due to the minimal execution time difference between garbler’s input “0” and
“1.”

However, for TinyGarble [361], it is indeed possible to achieve high SR
without utilizing JG (see Appendix B). This is primarily due to TinyGar-
ble’s implementation, which generates tokens for garbler input in an input-
dependent manner. That being said, enabling JG still enhances Goblin’s
average SR, offering a trade-off between performance and attack feasibility.

7.5.8 Impact of the Number of Traces

In the previous experiments, we evaluated the effectiveness of Goblin by
selecting 1000 random inputs, as capturing CPU cycles for all possible inputs
is both impractical and infeasible. This limited selection introduces variance
in the results.

To further investigate this, we analyzed the impact of increasing the num-
ber of CPU cycle traces. We collected traces after feeding powers of ten
(ranging from 10 to 100, 000) random inputs into the 128-bit SUM, Ham-
ming, and MULT benchmark functions—three benchmarks that exhibited
relatively high variance in our earlier results (see Figure 7.19). Figure 7.21
illustrates the SR of Goblin as a function of the number of CPU cycle traces.

As evident from the figure, increasing the number of traces consistently
improves the SR of Goblin. For larger trace counts, SR variance diminishes,
with the average stabilizing around 97% for all cases except for the 128-bit
MULT benchmark. This deviation can be attributed to the variation in gate
types, as previously discussed.

It is important to note that Goblin is a single-trace attack, meaning each
trace is processed independently. Thus, while increasing the number of traces
does not improve the effectiveness of individual attacks, it reduces overall
variance in the results. Consequently, to obtain a more precise assessment

196

(a) (b) (c)

Figure 7.21: SR of Goblin against (a) 128-bit SUM, (b) 128-bit Hamming,
and (b) 128-bit MULT for a range of 10-100, 000 randomly chosen inputs
(first to last row: JustGarble [187], Obliv-C [426], TinyGarble [361] with
free-XOR, and with half-gate optimizations).

of Goblin’s effectiveness, it is recommended to evaluate a larger number of
traces.

We initially limited our experiments due to the time-intensive nature of
collecting traces across all benchmark functions. However, comparing results
for 1000 and 100, 000 traces reveals that the improvement in the average SR
is marginal, further validating Goblin’s effectiveness even with a moderate
number of traces.

To evaluate the impact of an implementation where not all timing side-
channel vulnerabilities are addressed, we executed Goblin against TinyGarble

197

(a) (b)

Figure 7.22: SR of Goblin for 1000 randomly chosen inputs given to GC
garbled by TinyGarble [362] when (a) only free-XOR or (b) half-gate opti-
mization is enabled and JG is disabled.

(a) (b)

Figure 7.23: SR of Goblin against MULT, SUM, and Hamming benchmark
functions for a range of inputs garbled by TinyGarble [361] when (a) only
free-XOR optimization, (b) half-gate protocol is enabled, and JG is disabled.

with the Junk Generator (JG) disabled.
Figure 7.22 presents the results of Goblin against TinyGarble with JG

disabled. Even without JG, Goblin successfully reveals the garbler’s input
with an average SR exceeding 95%, which is only slightly lower than when
JG is enabled.

To further investigate this, we executed Goblin against MULT, SUM,
and Hamming benchmarks, varying input sizes from 128 to 1024 bits while
keeping JG disabled. The results, illustrated in Figure 7.23, show that SR

198

(a) (b) (c)

(a) (b) (c)

Figure 7.24: SR of Goblin against 128-bit (a) SUM, (b) Hamming, and (c)
MULT. CPU cycle traces captured from 10-100, 000 randomly chosen inputs
when JG is disabled. (Top: TinyGarble [361] with only free-XOR, Bottom:
with half-gate optimization).

increases as the benchmark input size grows.
Additionally, Goblin was tested against MULT, SUM, and Hamming

modules without JG to assess its effectiveness in the absence of artificial
cache eviction. Figure 7.24 shows the SR results for 128-bit (a) SUM, (b)
Hamming, and (c) MULT benchmarks using CPU cycle traces collected from
10 to 100, 000 randomly selected inputs. These results demonstrate that Gob-
lin can extract garbler input from an insecurely implemented framework even
without leveraging JG.

To examine the influence of gate types in the input layer on the SR, we
counted the number of XOR and AND gates in the input layers of AES and
256-bit MULT. These two benchmark functions exhibit significant variation
in results, as shown in Figure 7.19. Table 7.11 provides a detailed breakdown
of the gate types present in the input layers of AES and 256-bit MULT
benchmark functions.

Moreover, the AND gate category includes AND/NAND, OR/NOR, ANDN,
ORN, NANDN, and NORN gates, while the XOR gate category consists of
INV, XOR, and XNOR gates, as described in Section 7.5.4. It is evident
from Table 7.11 that AND gates dominate the AES input layer (75% of in-
put layer gates), whereas the input layer of the 256-bit MULT consists of an

199

Table 7.11: Type of the gates in the input layer of the AES and 256-bit
MULT modules.

AES 256-bit MULT

Percentage (%) Count Percentage (%) Count

AND gates in input layer 75 96 50 256

XOR gates in input layer 25 32 50 256

(a) (b)

Figure 7.25: SR of Goblin computed separately for AND and XOR input
gates of 128-AES, 256-bit MULT, 128-bit Hamming, 128-bit SUM, and 288-
bit SHA modules with (a) free-XOR and (b) half-gate optimization.

equal proportion of XOR and AND gates. This discrepancy explains why
the results for these two benchmark functions differ. The key reason lies in
the fact that determining the inputs given to XOR gates is inherently more
challenging compared to AND gates.

To further analyze this effect, we separately calculated the SR of Goblin
when applied to AND and XOR gates. Figure 7.25 presents the results for
launching Goblin against 128-AES, 256-bit MULT, 128-bit Hamming, 128-
bit SUM, and 288-bit SHA modules, similar to Figure 7.19, where the results
for AND and XOR gates were aggregated.

As observed in Figure 7.25, Goblin consistently achieves an average SR
close to 100% when targeting AND gates. However, when attacking XOR
gates, the SR varies within a range of 65% to 100% across different benchmark
functions. This aligns with the results presented in Figure 7.19, where the
difference between the mean values of CPU cycles collected for input “0”
and input “1” is significantly larger for AND gates than for XOR gates. The

200

close similarity in the mean values of CPU cycles for XOR gates indicates
that Goblin has a lower SR in distinguishing XOR gate inputs.

These findings reinforce the observation that Goblin achieves a higher SR
when attacking modules with a larger proportion of AND gates in their input
layers.

7.6 Discussion

The field of secure computation is rapidly evolving, driven by the need to
balance efficiency, security, and scalability in privacy-preserving applications.
Advances in GC, MPC, and hardware-based secure inference have introduced
promising optimizations, yet they also open new attack surfaces. The works
examined in this chapter highlight key challenges and opportunities in the
design of secure hardware accelerators and cryptographic protocols, focusing
on mitigating SCA, improving performance, and ensuring robust security
guarantees.

GC have long been a cornerstone of SFE, offering a way for multiple par-
ties to compute over encrypted data. However, optimization techniques such
as free-XOR and half-gates, while significantly reducing computation and
communication overhead, introduce vulnerabilities that can be exploited by
SCA. The Goblin attack demonstrates how timing variations in GC frame-
works can leak sensitive information about the garbler’s input [153]. By an-
alyzing execution time differences using ML-assisted clustering, Goblin suc-
cessfully recovers private inputs with high accuracy. Similarly, heat-induced
SCA have emerged as a significant threat to secure NN accelerators [253]. Un-
like traditional power analysis, which requires precise voltage measurements,
this attack manipulates FPGA components to generate heat, inducing data-
dependent leakage even in first-order masked implementations. Both of these
attacks underscore a fundamental challenge in secure computation, optimiza-
tions that reduce computational complexity often introduce unintended side
effects that adversaries can exploit.

At the hardware level, solutions such as HWGN2 [156] demonstrate the
feasibility of implementing GC directly on FPGA accelerators to mitigate
side-channel leakage. By leveraging custom-designed SFE modules, HWGN2

significantly reduces logical and memory resource requirements while main-
taining resistance to both power and EM SCA. This approach aligns well with
chiplet-based secure computation frameworks such as Garblet [158], which

201

seek to minimize communication overhead in MPC by distributing garbling
tasks across multiple chiplets. These solutions highlight the increasing role of
hardware in secure computation, emphasizing the need for tightly integrated
cryptographic protocols and secure microarchitectures.

While each of these works presents innovative approaches to improving
security and efficiency, they also reveal new trade-offs and open challenges.
For instance, while chiplet-based MPC drastically reduces communication
costs, the presence of untrusted chiplets or interposers raises concerns about
data integrity and leakage. One potential countermeasure is the integra-
tion of TEE within secure chiplets to enforce stricter access control poli-
cies [224]. Similarly, post-quantum cryptographic techniques, such as lattice-
based MPC [296], could provide stronger security guarantees against future
adversaries. In the case of timing attacks against GC, countermeasures in-
clude adopting constant-time execution strategies [207] and introducing arti-
ficial noise in the garbling process [95]. However, these solutions often come
at the cost of increased computation, making trade-off analysis crucial for
real-world implementations.

The threat posed by heat-induced leakage is particularly concerning be-
cause it leverages inherent physical properties of hardware rather than soft-
ware vulnerabilities. One possible mitigation is the use of dynamic thermal
management (DTM) techniques [151] to regulate temperature by dynami-
cally redistributing workloads. Additionally, security-aware memory alloca-
tion techniques [114] can optimize BRAM usage to prevent excessive heat
buildup. However, such approaches may introduce performance bottlenecks,
requiring further research into hybrid solutions that combine architectural
and software-level defenses.

A key insight from these works is that secure computation techniques
must be evaluated not only for their cryptographic soundness but also for
their susceptibility to SCA. The trade-off between security and efficiency is
evident in all the examined works, whether in GC optimizations, chiplet-
based MPC, or secure hardware accelerators. A recurring theme is the need
for hybrid approaches that integrate multiple security mechanisms to achieve
robust protection. For example, while HWGN2 provides resilience against
power and EM attacks, it could be further strengthened by incorporating
oblivious RAM (ORAM) techniques to prevent access pattern leakage. Like-
wise, HE-based secure inference, though computationally expensive, presents
an alternative path that eliminates the need for GC altogether [194]. Future
research should explore hybrid architectures that merge GC, HE, and ORAM

202

techniques to achieve optimal security-performance trade-offs.
Beyond technical countermeasures, secure computation must also con-

sider broader system-level implications. As hardware becomes increasingly
integral to cryptographic protocols, ensuring resistance to physical attacks
such as fault injection and DPA is paramount. Developing formal security
verification methodologies for hardware implementations will be critical in
preventing unexpected vulnerabilities. Moreover, the role of compilers and
secure microarchitectures in mitigating timing and power-based SCA requires
deeper investigation.

In conclusion, the works discussed in this chapter collectively illustrate the
rapid advancements and persistent challenges in secure computation. While
significant strides have been made in optimizing MPC, protecting against
SCA, and leveraging hardware accelerators for secure inference, these solu-
tions often introduce new trade-offs that must be carefully analyzed. The
future of secure computation lies in designing resilient architectures that
seamlessly integrate cryptographic techniques with secure hardware imple-
mentations. By bridging the gap between theoretical security and practical
deployment, we can pave the way for more robust privacy-preserving tech-
nologies in real-world applications.

The field of secure computation is no longer just about cryptography,
it is about designing secure systems from the ground up. Moving forward,
cross-disciplinary collaboration between cryptographers, hardware designers,
and system architects will be essential in achieving truly secure and efficient
computation.

203

Chapter 8

Fault Injection Attacks Against
Hardware Implementations

8.1 Motivation

ML, particularly deep NN, has become integral to various domains, including
image recognition, fraud detection, natural language processing, and even
drug discovery [432, 248]. As with other ML applications, NN-based systems
typically operate in two main phases: training and inference. During the
training phase, a substantial amount of data is utilized to optimize the model
parameters, whereas, in the inference phase, the trained NN is applied to
new inputs to generate predictions. This work focuses on inference tasks
performed at the edge, where current solutions either require clients to send
potentially sensitive data to cloud servers or mandate that model owners
store their proprietary NN models on clients’ devices.

The latter approach is gaining prominence due to the increasing demand
for edge computing, which mitigates network congestion by enabling local
computation near users, thereby reducing the communication overhead as-
sociated with accessing HPC resources [161]. However, this paradigm shift
introduces new security risks, including the possibility of IP infringement
and the exposure of model parameters, which could compromise the busi-
ness interests of NN owners or reveal sensitive information about the train-
ing data [248]. In light of these risks, physical attacks have been launched
against edge devices that host NN models [53, 29, 307, 170, 54, 377, 254].
Secure inference has emerged as a countermeasure, enabling the client and

204

Figure 8.1: Overview of our attack scenario. The client has physical access
to the device at the edge running the garbled NN to perform inference. The
server represents the NN owner whose private inputs are NN weights.

the NN owner to interact in a way that allows the client to obtain the pre-
diction result while ensuring that neither party gains unauthorized access to
the other’s private data (input privacy) [222].

To achieve secure inference, extensive research has been dedicated to se-
cure MPC, particularly secure two-party computation [222, 317, 173, 327,
328, 24, 75, 156, 333, 72]. Due to their competitive performance in terms
of online latency and accuracy, MPC-based NN inference protocols continue
to gain traction. While these protocols provide strong security guarantees
(as illustrated in Figure 8.1), implementation vulnerabilities may still be ex-
ploited. This raises a critical question: Are implementation-level attacks
beyond the adversary models typically considered in MPC protocols?

One might argue that such attacks are already addressed within existing
adversary models in secure two-party computation. In the context of pas-
sive adversaries, the notion of side-channel (or side-information) leakage has
been acknowledged in prior work [35]. It has been recognized that privacy is
rarely absolute [35], meaning that some information may inadvertently leak
during protocol execution. This includes circuit size, structure, and even
certain computational details [35, 133, 230]. Although the inputs of partic-
ipating parties should remain undisclosed, recent work has challenged this
assumption [223, 153]. Specifically, passive SCA in these studies have demon-
strated that private data can be extracted by analyzing power consumption
or execution time variations [223, 153].

When considering active implementation attacks, i.e., FIA, the traditional
MPC literature has primarily interpreted faults as corruption affecting either

205

the circuit or the inputs [32, 38, 31, 21, 227, 108]. Unlike accidental hard-
ware failures, Byzantine faults arise from adversarial actions that aim to
compromise the integrity or confidentiality of the computation [227]. Such
attacks can be used to either extract secret inputs or manipulate the compu-
tation to produce incorrect results, thereby violating privacy and correctness
guarantees.

To counteract faults, several cryptographic safeguards have been pro-
posed, including notions of robustness and fair execution [32, 134]. Fairness
ensures that either all parties receive the correct output or none do [215, 279],
while robustness (or guaranteed output delivery) prevents adversaries from
disrupting protocol execution [227]. Despite these measures, the question
remains: Is there a fault injection attack that can compromise input pri-
vacy without violating fairness or correctness guarantees—one that remains
effective even in robust, fair MPC protocols?

8.2 FaultyGarble: Fault Attack on Secure MPC

NN Inference

8.2.1 Fault Injection Attacks: Techniques and Impact

Fault injection (FI) attacks have emerged as a powerful class of active im-
plementation attacks that can compromise cryptographic protocols, secure
computation frameworks, and hardware security primitives. Unlike passive
attacks, which rely on observing side-channel leakages such as timing, power,
and EM emissions, FI attacks actively perturb the normal execution of a de-
vice by introducing transient or permanent faults. These faults, if carefully
crafted, can lead to exploitable behavior, such as incorrect computations,
bypassing security mechanisms, or even recovering secret information.

FI attacks have been studied extensively in cryptographic implementa-
tions, including block ciphers [28], public-key cryptosystems [49], and proto-
cols used in secure MPC [227]. These attacks can be broadly categorized into
transient faults, which are temporary and do not cause permanent damage to
the hardware, and permanent faults, which alter the system’s functionality
indefinitely. Depending on the precision and capabilities of an attacker, fault
injection methods include clock glitches [355], voltage manipulation [340],
EMFI [339], and LFI [378]. Each of these methods has different implications
for secure computation frameworks, which often rely on specific hardware

206

and cryptographic protections to maintain confidentiality and integrity.
Secure computation protocols such as GC [419] and HE [119] are suscep-

tible to FI attacks when deployed in real-world hardware. These attacks can
violate core security properties such as correctness and fairness by induc-
ing errors in the evaluation of encrypted circuits. In particular, FI attacks
against secure inference in DL applications, where privacy-preserving models
are deployed on edge devices, present an alarming security risk [53]. The
following subsections provide a deeper look into FI attacks against secure
computation and possible countermeasures.

8.2.2 Fault Injection and Active Attacks Against Se-
cure Computation

Active fault attacks have posed serious threats to secure computation proto-
cols, particularly when adversaries can target the execution of cryptographic
primitives within TEE, hardware accelerators, or MPC frameworks. These
attacks are particularly relevant when adversaries have partial access to a
device’s physical environment or can manipulate its execution remotely.

Techniques of Fault Injection in Secure Computation

Various fault injection techniques have been developed to exploit vulnerabil-
ities in secure execution environments:

• Clock and Voltage Glitches : These involve perturbing the device’s clock
or voltage supply to cause incorrect instruction execution [390]. Cryp-
tographic algorithms often rely on precise execution of modular arith-
metic, and even a single-bit fault can leak information about secret
keys [49].

• Laser and Electromagnetic Fault Injection: These are precise FI meth-
ods used to target specific regions of a chip, altering its computation
at the transistor level [339, 378]. Laser FI has been extensively used
against smart cards and TEEs.

• Rowhammer and Microarchitectural Faults : These exploit hardware
vulnerabilities in memory to induce bit flips that can compromise se-
cure execution [205]. Such attacks have been demonstrated against
cryptographic keys stored in memory [313].

207

• Software-based Fault Injection: This class of attacks does not require
physical access but manipulates execution through privilege escalation
or manipulating exception handling [234]. Attacks such as Spectre
and Meltdown exploit speculative execution to read protected memory,
bypassing secure execution environments [207].

Impact on Secure Computation

FIA compromise secure computation in several ways:

• Confidentiality Violations : In MPC, GC rely on encryption to ensure
input privacy [35]. Faults injected into key-generation or OT can reveal
cryptographic keys, allowing attackers to recover private inputs.

• Incorrect Computation and Fairness Violations : In secure inference, FI
attacks can lead to incorrect predictions, breaking correctness guaran-
tees [222].

• Function Privacy Violations : By targeting Boolean circuits used in
secure computation, attackers can infer the structure and topology of
the underlying function being evaluated [133].

• Denial-of-Service (DoS) Attacks : An adversary can use FI to cause
protocol failures, effectively halting computations in MPC-based sys-
tems.

These threats highlight the necessity of robust protection mechanisms to
safeguard secure computation protocols from FI attacks.

8.2.3 Protection Against Fault Injection Attacks

Developing countermeasures against FIA requires a combination of hardware-
based and software-based approaches. Depending on the attacker model
and available security assumptions, different protection mechanisms can be
deployed.

Hardware-Based Countermeasures

• Redundant Execution: Many secure processors implement instruction
duplication or error detection codes (EDC) to verify computations.
This approach is widely used in TEEs such as Intel SGX [81].

208

• Glitch-Resistant Circuit Design: Secure cryptographic hardware often
integrates fault detection logic to prevent clock or voltage glitches from
affecting execution [390].

• Physical Shields and Sensors : High-security environments, such as
those used in military applications, integrate tamper detection circuits
that erase sensitive data upon physical manipulation [339].

Software-Based Countermeasures

• Algorithmic Error Detection: Cryptographic implementations can in-
clude integrity checks, such as randomized encoding to detect incorrect
computations [126].

• Constant-Time Execution: Preventing software-based FI requires elim-
inating control-flow dependencies that attackers could exploit to ma-
nipulate execution timing [207].

• Fault-Resilient Secure Computation Protocols : MPC frameworks can
integrate ZKPs to ensure that results are computed correctly even in
adversarial conditions [134].

Although countermeasures exist, defending against high-precision FI at-
tacks, such as LFI, remains an open challenge. Future research must focus on
combining formal verification with hardware security primitives to mitigate
active threats while maintaining performance.

The discussion so far has highlighted the dangers of FI attacks against
secure computation, particularly within secure inference frameworks. While
MPC-based inference has been extensively studied for passive side-channel
leakage, active fault injection remains an underexplored yet critical threat
vector.

FaultyGarble presents the first known LFI attack against garbled circuit
implementations of secure NN inference. Unlike traditional FI attacks that
target cryptographic implementations, FaultyGarble exploits transient errors
in garbled circuit evaluation, allowing an adversary to extract model parame-
ters while maintaining functional correctness. This presents a significant shift
in the understanding of MPC security, as FaultyGarble demonstrates that
even maliciously secure MPC implementations are not inherently protected
against FI attacks.

209

The next section provides an in-depth exploration of FaultyGarble, de-
tailing its attack methodology, experimental results, and implications for the
future of secure inference.

8.2.4 Adversary Model

Adversary Model in MPC. Secure MPC protocols consider different ad-
versary models, with some frameworks assuming that both the client and
the NN owner adhere to the protocol, following an HbC model. In contrast,
a malicious adversary may deviate arbitrarily from the prescribed proto-
col [226]. Such deviations can include manipulating circuit execution or in-
troducing corrupted inputs to extract sensitive information about the other
party’s private data [227]. A range of fault-based corruptions—whether ap-
plied to input values or the circuit structure—has been explored in MPC
literature [32, 38, 31, 21, 227, 108]. If an NN owner is found engaging in
malicious activity, the consequences can be severe due to public accountabil-
ity [222, 226]. Conversely, clients, who maintain control over their execution
environment, may exploit this control to act maliciously and extract NN
model parameters in an attempt to replicate the proprietary model.

The malicious behavior of both parties has been analyzed in prior work [63,
233], particularly in the context of enforcing input consistency for the client.
A major focus of malicious adversarial models has been the ability to con-
struct an incorrect or manipulated garbled circuit, which is typically an
attack strategy associated with the party responsible for circuit genera-
tion—i.e., the NN owner in our case. While existing literature has explored
these threats, it has largely overlooked alternative attack vectors that could
be exploited by a malicious client.
Our Adversary Model. In our threat model, we assume a client-server
architecture, where a malicious client aims to extract the proprietary weights
of the NN model stored on the server cf. [389, 317, 222]. Consistent with
previous studies on secure MPC-based NN inference, we assume that both
the client and server are aware of the NN configuration. Furthermore, the
client either possesses prior knowledge of the processor architecture or is
capable of profiling the system to identify points of interest. This assumption
is reasonable, as the processor hardware itself is not protected by MPC, even
though the NN model parameters remain confidential to the server.

Additionally, we consider an adversary capable of performing physical
FIA, such as LFI, against the edge device executing the garbled NN. The

210

client, holding knowledge of its own input and access to the NN’s output,
exploits intrinsic characteristics of maliciously secure inference protocols.
Specifically, in many implementations, inference is performed in a layer-
wise manner on a general-purpose processor, as observed in frameworks such
as [222, 317, 362, 363, 364, 212, 262, 213]. By injecting faults into key in-
structions, the attacker alters their behavior and incrementally reconstructs
the NN model’s weights using a divide-and-conquer approach.

Our attack specifically targets NNs composed of alternating linear (fully
connected, convolutional, etc.) and non-linear ReLU layers, common build-
ing blocks of NN. Existing MPC-related countermeasures fail to prevent this
attack, as they primarily focus on securing computations against incorrect
circuits rather than protecting against malicious behavior introduced by a
client who follows the protocol but exploits physical fault injection tech-
niques.

8.2.5 Methodology

Model Extraction Attacks

One of the first known approaches to extracting the weights of NN models
was introduced by Carlini et al. [62], targeting unprotected NNs that are
not integrated into any secure MPC protocol. Their method strategically
selects input values with minor variations and examines how these small
changes influence the outputs. By identifying key transition points where
the behavior of the ReLU activation function shifts, the attack gradually
uncovers information about the model’s parameters. Repeating this process
across different layers enables the reconstruction of the entire NN with high
accuracy and significantly fewer queries compared to conventional extraction
methods.

Building on this idea, Lehmkuhl et al. [222] extended the attack to se-
cure inference protocols that employ additive SS under the HbC adversary
model. Like the work of Carlini et al., this attack exploits the sequential
layer-by-layer evaluation of NNs, a common characteristic of secure infer-
ence protocols. The attack begins at the last layer of the NN and proceeds
backward toward the first, where at each stage, the adversary slightly alters
their input shares provided to intermediate layers. This process, known as
malleation, involves introducing small controlled perturbations to the
intermediate layer inputs, which, in turn, affect the final output. By analyz-

211

ing these changes, the adversary gradually deduces the actual model weights,
as the final output is revealed in plaintext at the conclusion of the protocol.

While both attacks focus on extracting NN weights efficiently, they exploit
different vulnerabilities. The attack in [62] primarily leverages the linear
region of the ReLU function, whereas [222] takes advantage of weaknesses in
the protocol’s implementation to manipulate ReLU into behaving linearly.
Despite targeting different aspects of secure and non-secure NN inference,
both techniques underscore the inherent risks posed by structured model
extraction attacks.

Fault Injection for Model Extraction

Our proposed attack leverages fault injection as a cryptanalytic tool to com-
promise garbled NN protocols. Specifically, we target NN models incorpo-
rating the ReLU activation function, where inference is executed in a layer-
by-layer manner. The focus is on fully connected NN architectures, where
for consistency and comparison purposes, the linear layers do not include
additive bias terms, similar to the assumption in [222].

A key distinction between our approach and the attack in [222] lies in
the nature of the intermediate values processed during inference. In unpro-
tected interactive NN protocols, intermediate computations involve floating-
point representations, whereas in garbled NN inference engines, all values
are strictly binary, i.e., either ”0” or ”1,” due to the inherent constraints
of GC [35]. This binary representation significantly simplifies the attack, as
explained in the following section.

Extracting the Last Layer’s Weights

Figure 8.2 illustrates the interaction between the NN owner and the malicious
client during the evaluation of the kth layer in a garbled NN. The attack
begins by targeting the last layer’s weights, i.e., when k = ℓ. To initiate the
attack, the client deliberately sets its input to an all-zero vector, x = {0}n.
Standard Evaluation Process. At this stage, the client receives an array
of encrypted input labels

X = (X0,1
1 , X0,1

2 , . . . , X0,1
n),

which correspond to x = {0}n (see Figure 8.2). The client then proceeds
with the evaluation process as prescribed by the protocol, computing each

212

Figure 8.2: A high-level flow of an iterative GC-based NN inference. L0,1
G,k

and L0,1
E,k: garbler’s and client’s labels for kth layer (1 ≤ k ≤ ℓ). x and X:

client’s raw and garbled inputs received via OT; y: client’s raw outputs; L:
the intermediate layer garbled output.

layer iteratively until reaching the final layer:

Mℓ(ReLU(Mℓ−1(· · · ReLU(M1(x))))),

where Mk := (AND, XOR) represents the operations within the linear layer,
consisting of an AND followed by an ADD operation. The last layer, Mℓ ∈ Rm×t,
maps t inputs to m output classes. Figure 8.2 illustrates the execution of the
last linear layer for a single neuron.

To compute the output of the jth neuron in the final layer, the garbler’s
label L0,1

G,ℓ, which represents the layer’s weights, is multiplied by the client’s

label L0,1
E,ℓ, the output of the previous layer:

Yj = L0,1
G,ℓL

0,1
E,ℓ, 1 ≤ j ≤ m,

where m is the number of neurons in the last layer. At the end of this process,
the client holds the garbled output vector Y = [Y1, Y2, . . . , Ym]. Using the
decryption label d received from the garbler, the client decrypts Y to obtain
the raw output values:

(y1, y2, . . . , ym) = De(d, Y).

Weight Recovery via Fault Injection. Under normal circumstances, the
decrypted outputs yj (1 ≤ j ≤ m) do not reveal information about the last
layer’s weights, wℓ, since the NN inputs and biases are set to zero. However,

213

by injecting a fault that flips the AND operation in the final layer to an XOR,
the decrypted output simplifies to:

yj = wℓ ⊕ 0 = wℓ.

Since the client knows that its input was set to zero (x = {0}n), observing the
decrypted output directly reveals the last layer’s weights. This fault-injection
technique enables the malicious client to extract critical model parameters,
bypassing the security guarantees of the garbled NN protocol.

Extracting Intermediate Layers’ Weights

After successfully recovering the weights of the last layer, such as wℓ for a
given neuron, the next step is to extract the weights of the intermediate
layers. The extraction process follows a similar approach but introduces
an additional step: forcing all ReLU activation functions (AFs) after the
targeted intermediate layer to behave linearly, effectively turning them into
buffers. Once the last layer weights, wℓ, have been obtained, the attacker
proceeds to extract the weights layer by layer from Mℓ−1 down to M1.
Fault Injection for Weight Extraction. As in the last layer attack, the
client sets its input to x = {0}n and evaluates the NN model honestly. If the
target is the kth layer, the computation follows:

Mk(ReLU(Mk−1(· · · ReLU(M1(x))))),

where 1 ≤ k ≤ ℓ − 1. Each layer consists of a linear transformation, Mk,
followed by a non-linear activation function, ReLU = (1 − MSB(x)) · x, as
illustrated in Figure 8.2.

To retrieve the weights of layer Mk, the attacker injects a fault into the
AND operation within Mk, replacing it with an XOR, similar to the attack on
the last layer. The resulting faulty transformation is denoted by M ′

k. The
intermediate layer output L is computed as follows:

L = ReLU(M ′
k(L0,1

G,k, L
0,1
E,k)) = ReLU(L0,1

G,k ⊕ L0,1
E,k).

Expanding the ReLU function’s bitwise operation results in:

L = (1− MSB(L0,1
G,k ⊕ L0,1

E,k)) · (L0,1
G,k ⊕ L0,1

E,k).

214

Since the ReLU function outputs zero for negative values, the attacker
injects an additional fault into ReLU to force it to behave linearly, effectively
converting it into a buffer. Instead of applying its standard transformation:

(1− MSB(x)) · x,

the faulty ReLU operates as:

(1 OR MSB(x)) · x.

This transformation simplifies to:

(1 · x) = x,

ensuring that the ReLU function acts as a buffer rather than a non-linear
operation.
Propagation of Extracted Weights. Once the ReLU activation function
has been bypassed, the intermediate layer output simplifies to:

L = (1 OR MSB(L0,1
G,k ⊕ L0,1

E,k)) · (L0,1
G,k ⊕ L0,1

E,k),

which reduces to:
L = L0,1

G,k ⊕ L0,1
E,k.

This output is then propagated through the remaining layers, where the
faulty ReLU ensures that no additional non-linearity is introduced:

Yj = Mℓ(Mℓ−1(· · ·Mk+1(L
0,1
G,k ⊕ L0,1

E,k))).

Since the weights of the layers Mℓ, . . . ,Mk+1 were already extracted in pre-
vious steps, their values are known. Thus, after decrypting the final output,
the extracted NN model weights can be reconstructed as:

yj = wℓwℓ−1 · · ·wk+1 · (wk ⊕ 0) = wℓwℓ−1 · · ·wk+1︸ ︷︷ ︸
Known values

wk.

By iteratively repeating this process, the attacker can systematically ex-
tract the weights of all intermediate layers.

215

8.2.6 Fault Injection in Garbled NN Inference Engines

The implementation of GC-based inference engines on general-purpose pro-
cessors, such as MIPS [198] or ARM [18], provides notable advantages in
terms of practicality and efficiency. Leveraging these well-established archi-
tectures enhances secure computation by ensuring compatibility with existing
hardware ecosystems while benefiting from optimized software co-design ap-
proaches [160]. Moreover, the availability of advanced development tools and
compiler optimizations further simplifies integration and accelerates deploy-
ment.

To clearly illustrate our fault injection attack, we focus on one of the
most widely used general-purpose GC implementations based on the MIPS I
architecture [362, 364]. However, it is important to emphasize that our attack
is not restricted to MIPS-based implementations; it can also be applied to
other architectures with comparable instruction sets. We begin by identifying
possible fault injection points that can be exploited to achieve the desired
attack functionality. Following this, we select a specific fault injection target
as a practical demonstration of our attack methodology.
Program Counter (PC). During instruction execution, the processor begins
with the Instruction Fetch (IF) stage, where the PC holds the address of the
current instruction and supplies it to the instruction memory. The instruction
located at this address is then retrieved, and the PC is incremented by 4 to
point to the next instruction in sequence. A fault injection attack at this stage
could manipulate the PC value, forcing the processor to fetch an unintended
instruction, such as executing an XOR operation instead of an AND operation
during the linear layer computation.
Decoded Instruction. In the second stage, Instruction Decode (ID), the
fetched instruction is decoded to determine the operation it specifies. One of
the critical fields in this stage is the func register, which determines the exact
operation to be performed. An attacker can inject a fault at this stage by
modifying the func register, altering the intended instruction and compelling
the processor to execute a different operation.
Register Read (RR). In the third stage, the processor reads the values stored
in the source registers (rs and rt) from the register file, which contains 32
general-purpose registers. In conventional, unprotected NN evaluation pro-
tocols, an attacker can manipulate the register values to arbitrary numbers.
However, in the context of GC, the intrinsic encryption of data prevents
the attacker from setting registers to specific known values, limiting direct

216

Figure 8.3: A high-level representation of a general-purpose processor archi-
tecture, adapted from [362], illustrating possible fault injection points. Here,
func refers to the function code (6 bits) used in an R-Type register opera-
tion.

manipulation [35].
Arithmetic Logic Unit (ALU). In the Execution (EX) stage, the ALU per-
forms the operation specified by the decoded instruction. The ALU Control
unit determines which operation should be performed based on the func field
and opcode. For example, if the instruction specifies an ADD operation, the
ALU adds the source register values and stores the result. Fault injection
at this stage could alter ALU logic or the control flow, allowing an attacker
to modify computations, for instance, forcing a ReLU activation function to
behave linearly as a simple buffer.
Destination Register. In the Memory Access (MEM) stage, memory is ac-
cessed only if required; for R-type instructions, this step is typically bypassed.
Finally, in the Write Back (WB) stage, the result from the ALU operation
is written into the destination register. Similar to the register read stage, in
unprotected NN evaluation, an attacker could tamper with the destination
register values. However, in a GC-based protocol, the garbled data format
prevents setting specific known values, restricting direct exploitation.

217

Table 8.1: ALU function register value in MIPS I architecture

Function Binary Code Function Binary Code
NOTHING 6’b000000 OR 6’b000101
ADD 6’b000001 AND 6’b000110
SUBTRACT 6’b000010 XOR 6’b000111
LESS THAN 6’b000011 NOR 6’b001000
LESS SIGNED 6’b000100

Among the potential fault injection points, we focus on decoded instruc-
tion faults as a demonstrative example. However, this does not exclude the
possibility that an attacker could exploit other fault injection locations to
achieve a similar objective.

8.2.7 Fault Injection in the Decoded Instruction of the
NN Model

Our attack consists of two key steps: (1) modifying the operation of the
linear layer by changing AND to XOR to extract the last layer weights and
propagate intermediate layer weights forward, and (2) forcing the ReLU ac-
tivation function to behave linearly, effectively converting it into a buffer
instead of performing its usual non-linear operation. This second step en-
sures that ReLU does not alter negative intermediate weight values to zero,
which is essential for extracting weights from intermediate layers. Figure 8.4
provides a high-level overview of the control signals, ALU operations, and
the specific fault injection point targeted in our attack.

To carry out the first phase of our attack—altering the ALU function from
AND to XOR—we inject a fault into the func register during the execution
of the final linear layer, as illustrated in Figure 8.4. This fault alters the
ALU’s functionality, ensuring that the intended weight values propagate to
the last layer. Table 8.1 lists the ALU functions in the MIPS I architecture,
providing insight into the available operations and their respective binary
representations.

Extracting the last layer’s weights As shown in Table 8.1, the register
value for the AND operation, 6′b000110, differs by only one bit from that of
XOR, 6′b000111 (specifically, the least significant bit (LSB)). To carry out
the attack, the client monitors the instruction decode path and identifies the

218

Figure 8.4: A high-level illustration of the control signals, ALU procedure,
and the location of our fault attack.

location of the func register on the die. At the onset of the execution time
window corresponding to the last layer, the client targets the first bit of the
func register. By injecting a fault at this location, the operation is altered
from AND to XOR, ensuring that the last layer weights propagate to the output.

Extracting intermediate layers’ weights To recover the weights of in-
termediate layers, the attack proceeds in two steps: first, modifying the
operation of the target intermediate layer from AND to XOR—similar to the
approach used for the last layer—and second, forcing all subsequent ReLU
functions to behave as linear buffers. ReLU in the GC framework is im-
plemented as (1 − MSB(x))ANDx. This implementation translates into two
MIPS I instructions: SUB $result, $Constant 1, $MSB; followed by AND

$ReLUOutput, $result, $x; The goal of the attacker is to modify the first
operation so that instead of computing 1 − MSB(x), it computes 1ORMSB(x).
This change transforms the ReLU function from (1−MSB(x)) ANDx to 1 ANDx,
effectively turning it into a buffer since the OR of any value with 1 is always
1, and AND with 1 retains the input value.

To achieve this, the client modifies the func register value from SUB

(6′b000010) to OR (6′b000101). This requires flipping the three least signifi-
cant bits of the func register (010→ 101). After injecting the fault, the pro-
cessor first computes the OR of Constant 1 and MSB(x), which always results
in Constant 1. Next, it performs the AND operation between Constant 1

and x, yielding x as the output. By repeating this process for each neuron,

219

Figure 8.5: Iterative magnification of the device under the AlphaNOV setup
(from left to right): the Genesys2 board and the die shown is the Kintex 7
FPGA with the heatsink removed; the middle image depicts the die using the
20X lens to show the corner where the FF for fault is placed; Lastly, the right-
most image is captured using the 50X lens, illustrating the fault injection at
the point of interest (the white dot corresponds to the laser shot).

the attacker systematically extracts all intermediate layer weights through
multiple faults and queries.

8.2.8 Experimental Setup

For the LFI experiment, we utilized a Genesys 2 development kit featuring
an AMD/Xilinx Kintex 7 (XC7K325T-2FFG900C) FPGA, fabricated using
28 nm technology. The FPGA is housed in a flip-chip package. To access the
silicon backside, the fan and heat spreader were removed, exposing the die
without any further modifications, such as silicon polishing (see Figure 8.5).
Throughout all experiments, the FPGA core was supplied with 1.0 V and
operated at a clock frequency of 200 MHz.

8.2.9 Laser Fault Injection Setup

The LFI and near-infrared (NIR) microscopy were conducted using the AL-
PhANOV S-LMS [15] system. This setup integrates an optical microscope
with a precision-controlled laser for fault injection. The microscope includes
a camera system for imaging and a lens mounted on an XYZ motorized
stage, allowing precise focus on targeted regions. Two magnification lenses
were employed during the experiments: a 20X lens with standard resolution
(NA=0.6) and a field of view of 480 × 380 µm, and a 50X ultra-high res-
olution lens (NA=0.7) with a field of view of 190 × 150 µm. The system

220

is controlled via dedicated software, which facilitates navigation using an IR
view of the die and allows for precise control of the XYZ stage and camera
settings.

To capture real-time images of laser injections, the image integration
time was set to 0.1 ms, with a frame rate of 60 Hz, matching the display
refresh rate. The laser source employed in the experiment was a High Pulse
Performance PDM laser with a wavelength of 1064 nm. For fault injection,
the laser operated with a peak current of 1 A, a pulse width of 250 ns,
and a repetition frequency of 100 kHz. The laser was controlled via the
ALPhANOV software, which provided real-time monitoring of laser shots
within the targeted fault regions.”

8.2.10 Results

8.2.11 Complexity of the Attack: Number of Faults
and Queries

In this section, we analyze the number of queries and fault injections required
to extract the weights of commonly used NN models, as examined in prior
works [222, 62]. To extract the weights of the last layer, the client requires
only a single fault per weight. Since L0,1

G,ℓ corresponds to the label of zero,
and multiplying zero by any value results in zero, only the faulty neuron’s
weight—where the AND operation is altered to XOR—propagates to the output.
Thus, the number of faults required to extract the last layer’s weights is
#faults = pℓ, where pℓ denotes the number of parameters in the last layer.

Extracting weights from intermediate layers follows a similar approach
but requires additional fault injections. First, a fault is injected into the
linear computation of the target layer to propagate the target weight to
the input of ReLU. Then, another fault is injected into the ReLU function of
the target layer to disable its non-linearity, effectively making it a buffer.
Additionally, all neurons in subsequent layers from the target layer up to the
last layer, i.e., Mk,Mk+1, . . . ,Mℓ, require faults in their linear computation
to ensure weight propagation. Each of these layers’ ReLU functions must also
be modified to behave as buffers, requiring further fault injections.

The total number of faults required to extract an entire NN model is

221

Table 8.2: Comparison of query and fault complexity between our at-
tack, [222], and [62]. The number of faults applies only to our attack. Un-
like [222], which targets an HbC-secure inference engine, and [62], which
attacks unprotected models, our attack is mounted against a maliciously se-
cure NN inference engine.

Network
Dimensions

Parameters
Queries

Faults
[222] [62] Ours

784-128-1 100,480 100,480 221.5 100,480 200,832
784-32-1 25,120 25,120 219.2 25,120 50,208
10-10-10-1 210 210 216 210 610
10-20-20-1 620 620 217.1 620 1,820

calculated as follows:

#faults = (ℓ(ℓ− 1)/2︸ ︷︷ ︸
ReLU

+ ℓ(ℓ− 1)/2︸ ︷︷ ︸
AND→XOR

) · (p− pℓ) + pℓ = O(ℓ2p),

where p is the total number of parameters in the NN model, pℓ represents
the number of parameters in the last layer, and ℓ is the number of layers
in the NN. Furthermore, the number of queries remains equivalent to the
number of model parameters, as each query provides an input to the NN.
Thus, the query complexity of our attack is comparable to state-of-the-art
model extraction attacks, despite targeting a more secure scheme designed
to withstand malicious adversaries.

Table 8.2 compares our attack against GC-based NN inference secured
against a malicious adversary to [222], which targets an HbC-secure infer-
ence engine, and [62], which attacks an unprotected NN model. Notably,
while [222] evaluates NN inference with secret-sharing-based linear layers
and GC-based ReLU functions, our attack considers a fully GC-based NN
model. Unlike [222], which requires modifying the client’s share in a secret-
sharing-based linear layer, our attack directly injects faults into a GC-based
architecture.

Since [222] and [62] do not involve fault injections, the number of faults is
only relevant to our attack. Additionally, our attack requires up to 30× fewer
queries than [62], while matching the query complexity of [222], despite the
fact that our target is a maliciously secure NN model, whereas [222] attacks
an HbC-secure model. This result highlights that a client can successfully
extract a model secured against malicious adversaries without incurring any

222

Figure 8.6: Simulation of the alu func register during the execution of a
neuron in the first hidden layer (blue: execution window of a neuron, pur-
ple: execution of multiplication and summation per connected input, yellow:
execution of the ReLU function).

additional query overhead. However, unlike the previous attacks, our method
requires fault injections something that the client is assumed to be capable
of performing.

8.2.12 Simulation Results

To assess the effectiveness of our attack against garbled NN inference en-
gines, we first simulate the fault injection’s impact. For all experiments, we
introduced single-bit faults. We implemented a proof-of-concept multi-layer
perceptron (MLP), hereafter referred to as the target model, featuring two
hidden layers with five neurons each, a final layer with ten neurons, and an
input layer with five inputs. This configuration aligns with benchmark MLPs
from prior studies [156, 317, 267].

To evaluate the target model, we used the GC Lite MIPS implementation
from [361]. This setup allows us to observe the input labels and output
results to analyze the effects of fault injection. To compile the MLP into
MIPS I instructions, we employed the GNU compiler collection (GCC) [366],
following the recommendations of [362]. Fault injection was simulated using
SystemVerilog Assertions (SVA) in Vivado Suite 2023 [411]. The simulation
was conducted with a clock period of 50 ns, and the alu func register cycled
through the ALU functions listed in Table 8.1, ranging from 0 to 8.

Figure 8.6 illustrates the simulation results of the alu func register while
executing a neuron in the first hidden layer. The blue rectangle marks the ex-
ecution window of a single neuron, encompassing both multiplication opera-
tions and the ReLU activation. The purple rectangle highlights the execution

223

Figure 8.7: Simulation of the alu func register during the execution of a
neuron in the last layer (blue: execution window of a neuron, purple: execu-
tion of multiplication and summation per connected input).

of a single multiplication operation (AND = 6′b000110) followed by summation
(ADD = 6′b000001). Meanwhile, the yellow rectangle represents the ReLU ex-
ecution, which consists of a subtraction operation (SUB = 6′b000010) followed
by an addition operation (ADD = 6′b000001).

As seen in Figure 8.6, the execution of a single neuron in the first hidden
layer requires 12 clock cycles: Two clock cycles per input connection (totaling
10 cycles for 5 inputs) and two additional clock cycles for ReLU execution.

Thus, the execution of a single neuron in the hidden layer requires 12×50
ns = 600 ns. Since the target model consists of two hidden layers, each
containing five neurons, this process repeats 10 times, leading to a total
execution time of 6000 ns.

Figure 8.7 presents the simulation of the alu func register while executing
a neuron in the last layer of the target model. The blue rectangle represents
the execution window of the neuron, while the purple rectangle highlights
a single multiplication (AND = 6′b000110) followed by summation (ADD =
6′b000001).

According to Figure 8.7, the execution time for each neuron in the last
layer is determined as follows: Each neuron is connected to five intermediate
outputs. The execution requires two clock cycles per connection. Conse-
quently, each neuron computation spans 10 clock cycles, corresponding to
500 ns.

Given that the last layer contains 10 neurons, the total execution time
for this stage amounts to 500× 10 = 5000 ns.

224

Figure 8.8: Simulation of the alu func register during the computation of
a neuron in the last layer after fault injection (blue: execution window of a
neuron, purple: altered data register due to fault injection, orange: value of
alu func after fault injection).

Fault Injection in the Last Layer

To illustrate the effectiveness of our attack, we focus on the second neuron
in the last layer and demonstrate how fault injection modifies the alu func

register. The results are shown in Figure 8.8. The orange rectangle highlights
the effect of the fault injection on the alu func register. By injecting a fault
into the LSB of alu func, its value changes from 6 to 7, effectively altering
the executed instruction from AND = 6′b0000110 to XOR = 6′b0000111.

The purple rectangle in Figure 8.8 depicts the modified output data fol-
lowing the fault injection. To verify the attack’s impact, we retrieve the
garbled output label of the target neuron (second neuron in the last layer).
We intentionally set the weight of this neuron to 1 to analyze how the core
processes the AND and XOR operations on the label 0 and weight 1. Prior to the
attack, as shown in Figure 8.7, the core produces the output “0x092d4010,”
which corresponds to the garbled label of 0, computed as 0AND1 = 0, based
on the output retrieved from [361]. After injecting the fault, as depicted
in Figure 8.8, the core generates “0x0241200c,” which, according to [361],
corresponds to the garbled label of 1. This result stems from performing the
XOR operation on input 0 and weight 1, i.e., 0 ⊕ 1 = 1. This confirms that
our attack successfully extracts the weight of the second neuron in the last
layer.

To extract the remaining neuron weights in the last layer, the same fault
injection process can be applied at the same fault location but at different
execution time frames.

225

Figure 8.9: Simulation of the alu func register during the computation of a
neuron in the first intermediate layer (blue: execution window of a neuron;
purple: modified data register due to fault injection; orange: modified value
of alu func after fault injection).

Fault Injection in the Intermediate Layers

The attack on intermediate layers follows the same fault injection technique
used in the last layer but requires an additional step: forcing the ReLU
functions in all subsequent layers to behave linearly, effectively turning them
into buffers. To demonstrate this process, we target the first neuron in the
first hidden layer, with the simulation results shown in Figure 8.9.

The orange rectangle in Figure 8.9 highlights the fault injection location
within the alu func register during the execution of the ReLU function.
Following the fault injection, the instruction SUB = 6′b000010 is altered to
OR = 6′b000101. As a result, the ReLU function, initially defined as (1 −
MSB(x)) ANDx, is modified to (1 OR MSB(x)) ANDx. Since the OR operation
with 1 always results in 1, the expression simplifies to 1 ANDx = x. This
modification forces the ReLU function to act as a buffer, allowing the neuron’s
output to pass through unchanged.

To assess the impact of this alteration, we intentionally set the intermedi-
ate layer weights to −1 and all inputs to 1. In this setup, the neuron output
should be −5 since it aggregates five inputs. Normally, the ReLU function
would take this negative value and output 0. However, after fault injection,
we observe a change in the LSB of the ReLU output.

If the ReLU output remains 0, the corresponding LSB retains the label
for that value. Conversely, if the ReLU outputs a negative value, the LSB
transitions to 1, following the two’s complement representation used by the
core: 5 = 0b101 and −5 = 0b011.

As shown in Figure 8.9, the data register’s LSB changes to “0x024340c4,”
which corresponds to the label of 1 according to the labels generated by the

226

tool [52]. In contrast, without any fault injection, the LSB of the data register
remains at “0x0afffffa,” which corresponds to the label of 0, as illustrated
in Figure 8.6 and confirmed by [361]. This validates that the fault injection
successfully modifies the ReLU function into a buffer.

By systematically applying this process—injecting faults into both the
linear layer and ReLU functions—an adversary can extract the entire NN
model weights.

Laser Fault Injection Results

The setup utilized the same MIPS implementation with the NN program
stored in the program memory. The FF responsible for storing the opcode is
located in slice X1Y138 of the Kintex 7 FPGA. This slice is positioned near
one of the corners of the FPGA, as shown in Figure 8.5.

To localize and target the fault injection site, we initially used a 20X lens
to navigate to the corner of the FPGA. A 50X lens was then employed for
precise focusing on the target slice before irradiating the laser. The primary
goal of this experiment was to induce a fault in the opcode FF for the last
layer, flipping a bit to alter the instruction from AND to XOR. If successful, this
modification would reproduce the behavior observed in the simulated fault
injection.

To ensure that the induced fault affected only the intended bit without
disrupting other circuit components, we implemented flag outputs to monitor
different stages of the fault and verify the correctness of the output. A
dedicated flag was assigned to track the targeted opcode bit, ensuring that
the fault occurred as intended. Additionally, we included an output that
compared the ALU’s result with the expected faulty value after the fault
injection. To confirm that the processor continued functioning correctly, we
also monitored the execution of subsequent instructions.

The experiment successfully triggered all three output indicators, demon-
strating that the fault injection led to the correct extraction of weights from
the last layer. The faults were transient, meaning that the affected register
was overwritten with the correct instruction values in the subsequent clock
cycle(s) or after resetting the processor. Furthermore, no degradation in the
NN’s accuracy was observed post-attack, confirming that the NN model re-
mained intact after the fault injection. The attack achieved a success rate of
1, meaning that every fault attempt successfully flipped the targeted bit.

Using the same methodology, LFI can be extended to extract weights

227

from other layers as well.

8.3 Discussion

Limitations of Cut-and-Choose Against Fault Attacks

Maliciously secure GC frameworks primarily rely on the cut-and-choose mech-
anism to mitigate the risk of a corrupt garbler generating fraudulent cir-
cuits [230, 232]. The core idea behind cut-and-choose is that instead of
evaluating a single garbled circuit, the evaluator receives multiple GC and
randomly selects a subset to be opened for verification. If the selected circuits
pass the integrity check, the remaining circuits are assumed to be correctly
constructed, and the protocol proceeds with their evaluation.

Despite the robustness of cut-and-choose in preventing a dishonest garbler
from manipulating the computation, it fails to address adversarial behavior
from the evaluator. In particular, the cut-and-choose mechanism is designed
to ensure correctness but does not inherently prevent FIA that modify the
evaluation process. Since the evaluator is responsible for executing the GC, a
malicious client can still inject faults at the evaluation stage without violating
the principles of maliciously secure GC.

Our attack exploits this shortcoming by selectively injecting faults into
the garbled circuit evaluation phase. Even though the cut-and-choose proto-
col enforces the correctness of the GC before evaluation, it does not prevent
an adversary from targeting specific gates or altering the execution of arith-
metic operations within the garbled circuit. By introducing faults at carefully
chosen locations, the client can extract the model weights while adhering to
the framework’s defined security guarantees. This highlights a fundamental
gap in current maliciously secure GC frameworks—while they are designed
to prevent incorrect circuit generation, they do not offer protection against
active physical attacks, such as LFI, that occur during execution.

Vulnerabilities in Other General-Purpose Processors

While our attack is demonstrated on a MIPS-based GC inference engine,
it is not limited to this architecture. Other widely used general-purpose
processors, such as ARM [18], x86 [185], PowerPC [17], SPARC [360], and
RISC architectures [292], follow similar instruction execution cycles. The
fetch-decode-execute cycle is a common principle across these architectures,

228

where control signals dictate the execution of arithmetic and logical opera-
tions within the processor’s ALU.

In our attack, we leveraged the vulnerability in the instruction decoding
phase, where control signals are stored in specific registers (e.g., the func

register in MIPS). This vulnerability is not unique to MIPS; all modern
processors contain similar control registers that determine ALU functional-
ity. If an adversary identifies the location of these control registers through
side-channel analysis or reverse engineering, they can manipulate instruction
execution in a similar manner.

In ARM architectures, the ALU operations are determined by opcode en-
codings that are stored in the processor pipeline [363]. Fault injection could
modify these opcodes to change arithmetic operations in secure computa-
tion frameworks. Similarly, in x86 processors, execution relies on microcode
interpretation [185], and targeted fault injection could disrupt branch pre-
dictions or micro-operation scheduling, leading to erroneous computation
results. RISC architectures, which prioritize efficiency through a reduced
instruction set, could also be vulnerable if an instruction register is modified
to change the control flow of the program [292].

Given the commonalities across these architectures, the attack methodol-
ogy presented in this paper can be extended to other platforms. Any general-
purpose processor used to evaluate GC or execute secure computations is
potentially vulnerable to this form of fault injection.

Potential Countermeasures Against Fault Injection Attacks

To mitigate FIA against GC-based inference engines, several countermeasures
can be considered. These countermeasures fall into different categories, each
with trade-offs in terms of security, computational overhead, and practicality.

One effective countermeasure is the adoption of PFE to protect the ex-
ecution logic. In the PFE setting, not only is the data protected, but the
function itself is also obfuscated [133]. By extending GC protocols to support
PFE, the attacker loses visibility into how operations are performed, making
fault injection significantly harder to implement. Several implementations
of PFE have been proposed, such as GarbledCPU [364], GarbledEDA [157],
and HWGN2 [156]. These frameworks garble both data and execution logic,
thereby preventing an attacker from knowing when or where to inject faults.
However, PFE significantly increases computational complexity and mem-
ory requirements, making it a less practical solution for resource-constrained

229

environments.
An alternative approach involves leveraging fault-tolerant maliciously se-

cure GC frameworks. Some interactive secure computation frameworks have
been designed to be resilient against faults. TinyLEGO [108] and Mini-
LEGO [109] introduce XOR-homomorphic commitments that ensure the in-
tegrity of computed values throughout the garbled circuit. By enforcing con-
sistency across circuit evaluations, these frameworks mitigate FIA by making
it difficult for an adversary to selectively manipulate individual gate evalua-
tions. In these frameworks, each gate’s output is linked to the integrity of the
entire computation path. A single incorrect modification would propagate
errors throughout the circuit, making it infeasible to selectively inject faults
without triggering detectable inconsistencies. However, the downside of these
methods is their significant communication and computation overhead.

Another promising countermeasure is the adoption of hardware-based
protections to increase fault resistance. Instruction set hardening can in-
crease the HD between opcode representations, making single-bit fault in-
jections ineffective. For example, ensuring that the opcode for XOR differs
from AND by multiple bits would require an attacker to inject multiple simul-
taneous faults [199]. Error detection mechanisms such as parity checks and
Hamming codes can be implemented to validate instruction execution and
flag anomalies [27]. Additionally, introducing randomized execution timing
can prevent precise timing-based FIA. By varying instruction execution times
unpredictably, an attacker cannot accurately time fault injections, reducing
the attack’s reliability [27].

Redundant execution is another potential defense mechanism. This method
involves executing the same computation multiple times and comparing re-
sults. Dual execution, where two identical computations are run and their
results are compared at checkpoints, can help detect inconsistencies caused
by faults. A related technique is diversity-based execution, which involves us-
ing different instruction sequences or randomized memory layouts to prevent
predictable attack points [406]. Control flow integrity (CFI) mechanisms can
also be employed to enforce strict execution flow policies and detect unau-
thorized modifications [384].

Future Research Directions

While our study demonstrates the vulnerability of GC-based NN inference
engines to fault injection, further research is needed to explore efficient PFE

230

implementations that minimize computational overhead. Additionally, hy-
brid secure computation models that combine GC with HE or oblivious RAM
(ORAM) could offer stronger resilience against active adversaries. Another
promising avenue is the development of hardware-based security mechanisms
that integrate fault detection and mitigation directly into processor architec-
tures. These open questions highlight the need for more robust countermea-
sures to protect secure computation frameworks from evolving adversarial
threats.

231

Chapter 9

Discussion and Future Work

9.0.1 Lessons Learned from Secure Hardware Imple-
mentations

Extensive research in secure computation has revealed that cryptographic
security alone is insufficient when implemented on physical hardware. While
most theoretical frameworks operate under the assumption that adversaries
interact with the system exclusively through defined cryptographic inter-
faces, actual attackers frequently exploit underlying physical properties such
as timing discrepancies, power consumption patterns, and fault injection
techniques. These observations expose a critical disconnect between theo-
retical security assurances and practical robustness. Throughout this work
on secure MPC and hardware-based protections, several key lessons have
emerged that are likely to shape the trajectory of future secure computation
systems.

One of the most fundamental insights is the disparity between theoreti-
cally proven security and its practical realization. Secure computation pro-
tocols like GC and OT offer strong cryptographic guarantees under idealized
assumptions. However, when these protocols are instantiated on hardware,
new vectors of attack often emerge. The FaultyGarble [155] attack clearly
demonstrated that even sophisticated MPC-based systems can be under-
mined by inducing faults during the computation process [155]. In this case,
LFI was successfully employed to extract private model parameters from a
secure inference pipeline, illustrating that physical attacks can circumvent
the expected security provided by cryptographic mechanisms. This empha-
sizes the necessity for secure computation frameworks to incorporate both

232

algorithmic and physical-layer protections.
Another critical takeaway involves the perennial trade-off between effi-

ciency and security. Secure computation frameworks are inherently resource-
intensive, frequently demanding substantial computational power and com-
munication bandwidth. While numerous optimizations have been proposed
to mitigate these costs, such optimizations can inadvertently introduce vul-
nerabilities. The Goblin [153] framework exemplified this trade-off by show-
ing that software acceleration significantly boosts inference performance, yet
potentially introduces unintended side-channel leakage [153]. Thus, future
designs must seek a delicate balance between efficiency and uncompromised
security.

SCA remain one of the most persistent and evolving threats to secure
hardware implementations. While traditional cryptographic countermea-
sures like masking and blinding offer partial mitigation, they are not fool-
proof. The HWGN2 [156] framework demonstrated that even cryptograph-
ically protected inference processes can leak sensitive information through
power analysis, EM emissions [156]. These results underline the importance
of augmenting cryptographic protections with hardware-level defenses such
as noise injection, randomized instruction scheduling, and voltage balancing,
to achieve meaningful resistance against SCAs.

In addition to mitigating attacks, addressing performance limitations is
crucial for the practical deployment of secure computation. The Guardian-
MPC [154] study delivered a comprehensive evaluation of the cost-performance
trade-offs in existing frameworks, concluding that many current approaches
impose excessive overheads that hinder their viability for large-scale applica-
tions [154] . The findings underscore that while maintaining strong security
remains essential, performance bottlenecks must also be resolved to make
secure computation frameworks accessible and scalable.

Thermal side-channel attacks represent a new and emerging threat land-
scape. The Bake It Till You Make It [254] attack highlighted that heat-
induced variations in power consumption can be exploited to retrieve sensi-
tive information, such as cryptographic keys and model parameters [254]. In
contrast to conventional power analysis, which relies on high-resolution mea-
surements, thermal SCAs exploit gradual temperature changes over time,
rendering them more difficult to detect and counteract. This novel threat
emphasizes the need for secure computation frameworks to account for envi-
ronmental parameters like heat dissipation and to develop temperature-aware
countermeasures.

233

The transition toward chiplet-based architectures introduces additional
complexity in secure computation. Classical security models generally pre-
sume a monolithic and trusted processor environment. In contrast, modern
systems increasingly adopt multi-chiplet designs, where individual compo-
nents may be only partially trusted or even compromised. The Garblet [158]
framework exemplified how secure computation must evolve in this context
to maintain data confidentiality and integrity across distributed and po-
tentially untrusted hardware components [158]. In such architectures, ad-
versaries could inject faults, tamper with intermediate results, or intercept
inter-chiplet communication, necessitating the development of cryptographic
protocols capable of maintaining robustness in heterogeneous and adversarial
environments.

Beyond protecting data privacy, secure computation must also address
IP protection. The GarbledEDA [157] framework demonstrated that secure
multiparty computation techniques can be integrated into EDA flows to safe-
guard proprietary circuit designs during processes like simulation, verifica-
tion, and testing [157]. As the semiconductor industry becomes increasingly
globalized, protecting design assets at every stage is vital. However, privacy-
preserving verification techniques come with their own challenges, particu-
larly in terms of scalability. Continued improvements to MPC efficiency will
be necessary to make IP-protecting solutions both secure and commercially
viable.

A final overarching lesson is that secure computation is deeply interdis-
ciplinary by nature. Realizing truly secure and efficient implementations re-
quires collaborative innovations across cryptography, hardware security, ma-
chine learning, and systems engineering. As adversaries adopt increasingly
advanced strategies, defenders must integrate expertise across these domains
to develop resilient and adaptive security mechanisms. The collective insights
gained from GuardianMPC [154], FaultyGarble [155], HWGN2 [156], Gob-
lin [153], Bake It Till You Make It [254], Garblet [158], and GarbledEDA [157]
provide a strong foundation for guiding future research, ensuring that secure
computation evolves from a theoretical construct to a practical and enforce-
able security standard in real-world systems.

234

9.0.2 Future Directions in Secure and Private Imple-
mentation of MPC

While secure MPC has made remarkable progress in enabling privacy-preserving
computation, several key challenges still hinder its widespread deployment
in real-world systems. As adversaries develop increasingly sophisticated at-
tack vectors and hardware architectures evolve toward more complex and dis-
tributed designs, future secure computation frameworks must address several
pressing concerns. These include reducing computational and communication
overhead, improving robustness against side-channel and fault injection at-
tacks, enhancing scalability for chiplet-based designs, and integrating crypto-
graphic protocols with hardware-assisted security mechanisms. This section
outlines several promising research directions that can guide the development
of next-generation secure computation frameworks.

To ensure secure MPC continues to evolve from a theoretical construct
into a practical, deployable technology, it must include interdisciplinary inno-
vation that covers cryptography, systems design, and physical security. The
following subsections detail key points for enhancing efficiency, robustness,
and adaptability in future MPC implementations, particularly as secure com-
puting applications expand across cloud infrastructure, edge devices, and AI
inference pipelines.

9.0.3 Overcoming Computational and Communication
Overhead

Despite considerable advancements in MPC efficiency, computational and
communication overhead continues to be a primary barrier to large-scale
deployment. Protocols based on GC, HE, and OT introduced high costs,
making them less suitable for latency-sensitive or resource-constrained ap-
plications such as secure machine learning or privacy-preserving cloud ser-
vices [267, 319, 202]. As such, continued research is needed to develop op-
timized MPC techniques that maintain strong security guarantees while sig-
nificantly reducing operational costs.

A promising direction involves the use of hardware acceleration to en-
hance the performance of secure computation. The GuardianMPC [154]
framework, for instance, demonstrated how integrating dedicated hardware
modules, such as optimized OT engines, can effectively reduce both process-
ing and communication overhead during secure inference [154]. These find-

235

ings show that hardware-software co-design—where cryptographic primitives
are implemented directly in specialized accelerators—can offer considerable
performance benefits without sacrificing privacy.

Building on this idea, future research should explore the design and imple-
mentation of specialized hardware platforms, including FPGAs and ASICs, to
accelerate cryptographic operations while maintaining strict security proper-
ties. Such platforms may also support scalable reconfiguration, which would
enable MPC frameworks to dynamically adapt performance characteristics
to different application demands.

Another crucial area for improvement is minimizing the round complexity
of MPC protocols. Many current schemes involve multiple rounds of com-
munication, leading to undesirable latency, particularly in high-latency or
bandwidth-constrained environments. Techniques such as function-independent
preprocessing, batched operations, and communication pattern optimization
offer viable paths to reducing this bottleneck [202]. These techniques are
particularly important for scenarios like distributed learning, where network
latency can reduce throughput [245].

Additionally, hybrid models that combine TEEs [81] with cryptographic
MPC protocols may provide a more practical balance between efficiency and
security by selectively offloading sensitive operations to trusted hardware
components. This combination allows secure MPC systems to bypass ex-
pensive cryptographic operations when a minimal trusted base is available,
enabling secure computation to scale into resource-constrained devices at the
edge.

9.0.4 Stronger Resilience Against Fault and Side-Channel
Attacks

To provide trustworthy and tamper-resilient results, secure computation frame-
works must evolve to effectively counter physical-layer threats such as fault
injection and SCA. While cryptographic protocols offer rigorous privacy guar-
antees at the algorithmic level, real-world hardware deployments are suscep-
tible to implementation-level vulnerabilities [28]. These include variations in
power consumption, electromagnetic emissions, timing behavior, and exter-
nally induced faults [104, 117, 28, 153]. Such attacks often bypass mathe-
matical guarantees by targeting the physical substrate that executes secure
computation.

236

Recent findings, such as the FaultyGarble [155] attack, have shown that
even sophisticated MPC-based frameworks can be compromised via LFI. In
these scenarios, adversaries introduced controlled faults during secure infer-
ence to leak internal model parameters [155]. These observations highlight a
critical need for future MPC systems to move beyond passive cryptographic
protection and incorporate active defenses that ensure the integrity of the
computation process.

To mitigate these threats, future secure computation architectures must
adopt built-in fault detection and fault tolerance mechanisms. Strategies
such as redundant execution [300], dual-rail logic [323], randomized instruc-
tion scheduling [58], and majority voting [30] can help identify and neutral-
ize fault-induced errors. Hardware-level monitoring units can also play a
role by detecting abnormal power or thermal signatures indicative of fault
attempts [254]. By embedding these mechanisms into secure computation
frameworks, the system gains the ability to detect tampering at runtime and
potentially recover from or halt faulty executions.

In parallel, addressing side-channel leakage remains a complex challenge.
The HWGN2 [156] framework introduced PFE techniques that obscure both
inputs and functional structure, effectively reducing leakage from timing and
power analysis [156]. These techniques represent a promising step toward
minimizing leakage without incurring excessive computational cost.

Future research should focus on generalizing and optimizing such counter-
measures to support a wide range of secure computation tasks. Additionally,
dynamic runtime techniques such as circuit randomization [3] and operand
shuffling [395] can further strengthen resistance to SCAs. On the hardware
side, approaches such as power equalization, current flattening, and artificial
noise injection can mask data-dependent variations [247]. Combining these
techniques in a layered fashion will be critical to defending against increas-
ingly advanced adversaries capable of performing high-resolution measure-
ments and machine learning-assisted SCA analysis.

Ultimately, resilience against fault and side-channel attacks will require
coordinated innovations across circuit design, compiler-level transformations,
and cryptographic protocol engineering. The integration of these disciplines
will be essential to achieving robust, real-time secure computation capable
of resisting not only passive observation but also active physical tampering.

237

9.0.5 Scalability in Chiplet-Based Architectures

The growing adoption of chiplet-based architectures introduces new dimen-
sions of complexity and risk in the design of secure computation systems. Un-
like monolithic processors, which execute computation within a single trusted
boundary, chiplet-based systems are composed of multiple discrete hardware
units connected through high-speed interconnects. These components may
originate from different vendors, vary in trustworthiness, and operate under
differing security assumptions. This heterogeneity challenges the founda-
tional assumptions of many traditional MPC protocols, which often presume
a unified and fully trusted computational platform [303].

The Garblet framework offered a pioneering solution to this challenge by
demonstrating how GC-based MPC could be efficiently distributed across
multiple chiplets while preserving security guarantees and significantly re-
ducing communication overhead [158]. This distribution enables higher par-
allelism and scalability, making it well-suited for complex workloads such as
privacy-preserving neural network inference. However, scaling MPC across
untrusted chiplets raises several unresolved issues that require focused re-
search.

One critical challenge is ensuring that data transmitted between chiplets
remains secure. Cross-chiplet data leakage, replay attacks, and fault propa-
gation are genuine risks when computation is split across physically separate
units. Secure inter-chiplet communication protocols must therefore include
authentication [2], integrity checking [177], and encryption mechanisms [387]
that operate at both the hardware and protocol levels [8].

Furthermore, adversarial chiplets can potentially deviate from expected
computations or leak sensitive intermediate values. Addressing this requires
the development of maliciously-secure MPC protocols and verification mech-
anisms capable of detecting and mitigating malicious behavior at runtime.
Techniques such as circuit-level consistency checks [9], redundancy across
chiplets [1], and secure multi-hop data routing [121] may help minimize trust
assumptions in heterogeneous chiplet-based environments.

Future chiplet-based secure computation platforms must integrate se-
curity at the microarchitectural level by embedding hardware root-of-trust
modules [13], implementing secure boot processes [372], and enabling fine-
grained access control [271] between chiplets. These features will be vital
for maintaining isolation and integrity in multi-chip designs, particularly in
scenarios involving third-party components or off-the-shelf accelerators [271].

238

Moreover, as chiplet ecosystems continue to expand, there is a growing
need for scalable resource management, load balancing, and task scheduling
frameworks that are aware of both performance constraints and security risks.
Ensuring consistent execution while distributing workloads across potentially
untrusted compute units requires new orchestration techniques that tightly
couple system-level scheduling with MPC security guarantees [8].

In summary, scalable secure computation in chiplet-based systems de-
mands a rethinking of assumptions around trust boundaries, communication
integrity, and architectural uniformity. By developing cryptographic pro-
tocols, runtime monitors, and microarchitectural primitives tailored to dis-
tributed heterogeneous computing, the MPC community can better prepare
for the next wave of secure, modular hardware platforms.

239

Bibliography

[1] Secrop: Secure cluster head centered multi-hop routing protocol for
mobile ad hoc networks. Security and Communication Networks, 9(16),
2016.

[2] Physical layer security: Authentication, integrity and confidentiality.
arXiv:2001.07153, 2020.

[3] Generation of all randomizations using circuits. Annals of the Institute
of Statistical Mathematics, 75:683–704, 2022.

[4] Andreas Agne, Markus Happe, and Marco Platzner. Seven recipes for
setting your fpga on fire–a cookbook on heat generators. In 2014 In-
ternational Conference on Reconfigurable Computing and FPGAs (Re-
ConFig), pages 1–7. IEEE, 2014.

[5] Gianluca Agosta and Jean-Michel Paris. Hardware authentication for
secure chiplet integration. IEEE Design & Test, 39(5):70–85, 2022.

[6] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The em
side—channel(s). In Cryptographic Hardware and Embedded Systems
(CHES 2002), volume 2523 of Lecture Notes in Computer Science,
pages 29–45. Springer, 2002.

[7] Faizan Ahmad and Kazim Shamsi. Hardware security challenges and
opportunities in chiplet-based architectures. IEEE Transactions on
Secure Systems, 38(2):230–248, 2022.

[8] Aikata Aikata, Ahmet Can Mert, Sunmin Kwon, Maxim Deryabin, and
Sujoy Sinha Roy. Reed: Chiplet-based accelerator for fully homomor-
phic encryption. arXiv preprint arXiv:2308.02885, 2023.

240

[9] D. Airehrour, J. Gutierrez, and S. K. Ray. A survey of secure rout-
ing protocols in multi-hop cellular networks. IEEE Communications
Surveys & Tutorials, 20(4):3182–3203, 2018.

[10] MD Abdullah Alam, Domenic Forte, and Mark M Tehranipoor. Re-
cycled fpga detection using ring oscillator patterns. In 2016 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), pages 43–48. IEEE, 2016.

[11] Md Mahbub Alam, Shahin Tajik, Fatemeh Ganji, Mark Tehranipoor,
and Domenic Forte. RAM-Jam: Remote temperature and voltage fault
attack on FPGAs using memory collisions. In 2019 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages
101–110, 2019.

[12] Faisal Ali and Neha Gupta. Modular integration of chiplets for ai
accelerators. ACM Transactions on Design Automation of Electronic
Systems, 27(3):1–20, 2022.

[13] Usman Ali, Hamza Omar, Chujiao Ma, Vaibhav Garg, and Omer Khan.
Hardware root-of-trust implementations in trusted execution environ-
ments. Cryptology ePrint Archive, Paper 2023/251, 2023.

[14] Abdulaziz Alkanhal, Shams Shakib, and Krzysztof Gaj. An efficient ip
protection technique for hardware accelerators using logic obfuscation
and encryption. IEEE Transactions on Emerging Topics in Computing,
10(1):196–209, 2019.

[15] AlphaNOV. S-LMS. [Online]https://www.alphanov.com/

en/products-services/single-laser-fault-injection [Accessed:
Mar.5, 2024], 2023.

[16] Thales Alves and Felicita Felton. Trustzone: Integrated hardware and
software security. In ARM Technical Report, 2004.

[17] Apple Computer, Inc. and IBM Corporation and Motorola, Inc. The
PowerPC Architecture: A Specification for a New Family of RISC Pro-
cessors. Morgan Kaufmann Publishers, 2 edition, 1995.

[18] ARM ARM. Architecture reference manual. ARMv7-A and ARMv7-R
edition, 2012.

241

[Online] https://www.alphanov.com/en/products-services/single-laser-fault-injection
[Online] https://www.alphanov.com/en/products-services/single-laser-fault-injection

[19] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael
Zohner. More efficient oblivious transfer and extensions for faster se-
cure computation. In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages 535–548. ACM, 2013.

[20] C. Ashokkumar, Ravi Prakash Giri, and Bernard Menezes. Highly
efficient algorithms for aes key retrieval in cache access attacks. In 2016
18th International Symposium on High Assurance Systems Engineering
(HASE), pages 142–149. IEEE, 2016.

[21] Yonatan Aumann and Yehuda Lindell. Security in the presence of
active and passive adversaries. Journal of Cryptology, 23:281–345, 2010.

[22] Ali Bahmani and Yousuf Ahmad. Trusted execution in heterogeneous
multi-chip modules (mcms). IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 42(2):321–338, 2023.

[23] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. Fault
injection techniques on cryptographic devices. In 2011 Workshop on
Fault Diagnosis and Tolerance in Cryptography, pages 3–4. IEEE, 2011.

[24] Marshall Ball, Brent Carmer, Tal Malkin, Mike Rosulek, and Nichole
Schimanski. Garbled neural networks are practical. Cryptology ePrint
Archive, 2019.

[25] Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for
boolean and arithmetic circuits. In Proc. of the 2016 ACM SIGSAC
Conf. on Computer and Comm. Security, pages 565–577, 2016.

[26] Endre Bangerter, David Gullasch, and Stephan Krenn. Cache
games—bringing access-based cache attacks on aes to practice. In 2011
IEEE Symposium on Security and Privacy, pages 490–505. IEEE, 2011.

[27] Hagai Bar-El, Hovav Shacham, Eli Biham, David Boneh, and Bart
Preneel. The sorcerer’s apprentice guide to fault-tolerant processing.
In Proceedings of the IEEE Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pages 65–75. IEEE, 2006.

[28] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Nac-
cache. Fault injection attacks on cryptographic devices: Theory, prac-
tice, and countermeasures. Proceedings of the IEEE, 100(11):3056–
3076, 2012.

242

[29] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. CSI
NN: Reverse engineering of neural network architectures through elec-
tromagnetic side channel. In 28th USENIX Security Symp. (USENIX
Security 19), pages 515–532, 2019.

[30] Stefan Baumgartner, Mario Huemer, and Michael Lunglmayr. Efficient
majority voting in digital hardware. arXiv:2108.03979, 2021.

[31] Donald Beaver. Secure multiparty computation can be efficient. Ad-
vances in Cryptology–CRYPTO’91, pages 306–318, 1991.

[32] Donald Beaver, Shafi Goldwasser, and Silvio Micali. Secure multiparty
protocols and zero-knowledge proof systems tolerating a faulty minor-
ity. Journal of Cryptology, 4:117–136, 1989.

[33] George Becker, Jim Cooper, Elke De Mulder, Gilbert Goodwill, Joshua
Jaffe, Gary Kenworthy, Timofei Kouzminov, Andrew Leiserson, Mark
Marson, and Pankaj Rohatgi. Test vector leakage assessment (tvla)
methodology in practice. In International Cryptographic Module Con-
ference (ICMC), volume 1001, page 13. SN, 2013.

[34] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rog-
away. Efficient garbling from a fixed-key blockcipher. In 2013 IEEE
Symp. on Security and Privacy, pages 478–492. IEEE, 2013.

[35] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In Proc. of the 2012 ACM Conf. on Computer and
Comm. security, pages 784–796, 2012.

[36] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-
honest secure multiparty computation for the internet. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 578–590, 2016.

[37] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation.
In Proceedings of the 20th Annual ACM Symposium on Theory of Com-
puting (STOC), pages 1–10. ACM, 1988.

243

[38] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Complete-
ness theorems with constructive proofs for symmetric-key cryptogra-
phy. SIAM Journal on Computing, 48(3):792–811, 2019.

[39] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
Scalable zero knowledge with no trusted setup. In Advances in
Cryptology–CRYPTO 2019: 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceed-
ings, Part III 39, pages 701–732. Springer, 2019.

[40] Yoshua Bengio. Learning deep architectures for ai. Foundations and
Trends in Machine Learning, 2(1):1–127, 2009.

[41] Sarah Benhani and Vasileios Zografos. Secure interconnects for
chiplet-based architectures. IEEE Transactions on Secure Computing,
19(5):1023–1035, 2022.

[42] Daniel J. Bernstein. Cache-timing attacks on aes. Tech-
nical Report 2005/102, Cryptology ePrint Archive, 2005.
https://eprint.iacr.org/2005/102.

[43] Vishal Bhat and Kunal Mehta. Zero-trust architectures for chiplet-
based systems. ACM Transactions on Secure Systems, 20(4):87–102,
2021.

[44] Arnab Bhattacharyya, Vipul Goyal, Aayush Jain, and Peter S.
Steenkiste. Secure computation with minimal interaction, revisited.
In Advances in Cryptology – CRYPTO 2021, pages 659–689. Springer,
2021.

[45] Swarup Bhunia and Ashish Mehta. Future trends in secure chiplet
integration. IEEE Design & Test, 41(1):23–39, 2023.

[46] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryp-
tosystems. In Burt Kaliski, editor, Advances in Cryptology – CRYPTO
’97, volume 1294 of Lecture Notes in Computer Science, pages 513–525.
Springer, 1997.

[47] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler,
Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus

244

Nielsen, Kurt Nielsen, Jakob Pagter, Michael Schwartzbach, and Tomas
Toft. Secure Multiparty Computation Goes Live. Springer, 2009.

[48] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. In ACM Conference on Computer and Communications Se-
curity (CCS), pages 1175–1191, 2017.

[49] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the im-
portance of checking cryptographic protocols for faults. In Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), pages 37–51, 1997.

[50] Shekhar Borkar and Andrew A Chien. The future of microprocessors.
Communications of the ACM, 54(5):67–77, 2011.

[51] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-
nothing disclosure of secrets. In Andrew M. Odlyzko, editor, Advances
in Cryptology — CRYPTO’ 86, volume 263 of Lecture Notes in Com-
puter Science, pages 234–238. Springer, 1987.

[52] L Braun and W Zakarias, R. Tinylego framework. [Online]https://
github.com/AarhusCrypto/TinyLEGO [Accessed Sep.28, 2023], 2019.

[53] Jakub Breier, Shivam Bhasin, David Jap, Kayalvizhi Khoo, and Si-
mon Tinguely. Practical fault attack on deep neural networks. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 2204–2206, 2018.

[54] Jakub Breier, Dirmanto Jap, Xiaolu Hou, Shivam Bhasin, and Yang
Liu. Sniff: Reverse engineering of neural networks with fault attacks.
IEEE Trans. on Reliability, 2021.

[55] Franjo Brglez, David Bryan, and Krzysztof Kozminski. Combinational
profiles of sequential benchmark circuits. In Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS), pages
1929–1934, 1985.

245

[Online]https://github.com/AarhusCrypto/TinyLEGO
[Online]https://github.com/AarhusCrypto/TinyLEGO

[56] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power
analysis with a leakage model. In Intrl. WKSP on cryptographic hard-
ware and embedded systems, pages 16–29. Springer, 2004.

[57] David Brumley and Dan Boneh. Remote timing attacks are practical.
Computer Networks, 48(5):701–716, 2005.

[58] Christopher James Buehler. An instruction scheduling algorithm for
communication-constrained microprocessors. Master’s thesis, Mas-
sachusetts Institute of Technology, 1998.

[59] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the in-
tel sgx kingdom with transient out-of-order execution. In 27th USENIX
Security Symposium (USENIX Security), pages 991–1008, 2018.

[60] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. Flash:
Fast and robust framework for privacy-preserving machine learning.
Cryptology ePrint Archive, 2019.

[61] Claude Carlet, Louis Goubin, Emmanuel Prouff, and Matthieu Rivain.
Higher-order masking schemes for s-boxes. Cryptology ePrint Archive,
2012:203, 2012.

[62] Nicholas Carlini, Matthew Jagielski, and Ilya Mironov. Cryptanalytic
extraction of neural network models. In Annual Intrl. Cryptology Conf.,
pages 189–218. Springer, 2020.

[63] Henry Carter, Charles Lever, Patrick Traynor, and Kevin R. B. Butler.
Secure outsourced garbled circuit evaluation for mobile devices. In 25th
USENIX Security Symposium (USENIX Security 16), pages 289–306.
USENIX Association, 2016.

[64] Esteban Castro, Swarup Bhunia, and Domenic Forte. Breaking ieee
p1735 cryptography using side-channel attacks. In Proceedings of the
2020 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST), pages 83–93, 2020.

246

[65] Rajat Chakraborty and Swarup Bhunia. Trusted chiplet integration:
Challenges and solutions. IEEE Transactions on Secure Hardware De-
sign, 28(1):55–72, 2020.

[66] Nishanth Chandran, Divya Gupta, Sai Lakshmi Bhavana Obbattu, and
Akash Shah. {SIMC}:{ML} inference secure against malicious clients
at {Semi-Honest} cost. In 31st USENIX Security Symposium (USENIX
Security 22), pages 1361–1378, 2022.

[67] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and
Shardul Tripathi. Ezpc: Programmable and efficient secure two-party
computation for machine learning. In 2019 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 496–511. IEEE, 2019.

[68] Nishanth Chandran, Aayush Jain, Rafail Ostrovsky, and Amit Sa-
hai. Threshold fully homomorphic encryption and secure computa-
tion. In Advances in Cryptology – EUROCRYPT 2020, pages 501–531.
Springer, 2020.

[69] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. Template attacks.
In Intrl. WKSP on Cryptographic Hardware and Embedded Systems,
pages 13–28. Springer, 2002.

[70] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. Trident: Efficient
4pc framework for privacy preserving machine learning. arXiv preprint
arXiv:1912.02631, 2019.

[71] Hao Chen, Qing Wang, and Ning Wu. V2c: A verilog to c transla-
tion tool for hardware/software co-design. In Proceedings of the 2013
IEEE International Symposium on Circuits and Systems, pages 120–
123, 2013.

[72] Tiancheng Chen, Xiao Wang, Yu Wang, and Mingsheng Zhang. Se-
cureml: Privacy-preserving machine learning. In USENIX Security
Symposium, pages 555–572, 2020.

[73] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu,
Yunji Chen, and Olivier Temam. Dadiannao: A machine-learning su-
percomputer. In Proceedings of the 47th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pages 609–622.
IEEE Computer Society, 2014.

247

[74] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Tar-
geted backdoor attacks on deep learning systems using data poisoning.
arXiv preprint arXiv:1712.05526, 2017.

[75] Yu Chen, Lei Zhang, Tingting Wu, and Xiaodong Du. Fobnn: Fully
oblivious binarized neural networks for privacy-preserving machine
learning. IEEE Transactions on Information Forensics and Security,
2024.

[76] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Ho-
momorphic encryption for arithmetic of approximate numbers. In Ad-
vances in Cryptology–ASIACRYPT 2017: 23rd International Confer-
ence on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I
23, pages 409–437. Springer, 2017.

[77] To-Yat Cheung. Graph traversal techniques and the maximum flow
problem in distributed computation. IEEE Transactions on Software
Engineering, SE-9(4):504–512, 1983.

[78] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng
Zhou. On the security of the “free-xor” technique. In Theory of Cryp-
tography Conference, pages 39–53. Springer, 2012.

[79] Josh Daniel Cohen-Benaloh and Michael de Mare. Efficient broadcast
time-stamping. Technical Report, Clarkson University, 1987.

[80] Jean-Sébastien Coron. Resistance against differential power analysis for
elliptic curve cryptosystems. In Cryptographic Hardware and Embedded
Systems - CHES 1999, First International Workshop, Worcester, MA,
USA, August 12-13, 1999, Proceedings, pages 292–302. Springer, 2000.

[81] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryp-
tology ePrint Archive, 2016:86, 2016.

[82] Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Secure Mul-
tiparty Computation and Secret Sharing. Cambridge University Press,
2015.

248

[83] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A se-
cure and optimally efficient multi-authority election scheme. In An-
nual International Cryptology Conference (CRYPTO), pages 103–118.
Springer, 1997.

[84] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael. In First
Advanced Encryption Standard (AES) Conference, 1998.

[85] Anders Dalskov, Daniel Escudero, and Marcel Keller. Fantastic
four:{Honest-Majority}{Four-Party} secure computation with mali-
cious security. In 30th USENIX Security Symposium (USENIX Security
21), pages 2183–2200, 2021.

[86] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Mul-
tiparty computation from somewhat homomorphic encryption. In Ad-
vances in Cryptology–CRYPTO 2012: 32nd Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
pages 643–662. Springer, 2012.

[87] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption. In
Advances in Cryptology – CRYPTO 2012, pages 643–662. Springer,
2012.

[88] Saurabh Das and Anil Kumar. Design challenges and future prospects
of chiplet architectures. Journal of Computer Engineering, 20(1):88–
102, 2021.

[89] Saurabh Das, Jian Zhang, and Yu Wang. Chiplet-based architecture for
next-generation computing systems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 41(7):1894–1906,
2022.

[90] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin
Lauter, Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz.
Chet: an optimizing compiler for fully-homomorphic neural-network
inferencing. In Proceedings of the 40th ACM SIGPLAN conference
on programming language design and implementation, pages 142–156,
2019.

249

[91] Thomas De Cnudde, Maik Ender, and Amir Moradi. Hardware mask-
ing, revisited. IACR Trans. on Cryptographic Hardware and Embedded
Systems, pages 123–148, 2018.

[92] Roy De Maesschalck, Dominique Jouan-Rimbaud, and Denny L Mas-
sart. On mahalanobis distance classification. Chemometrics and Intel-
ligent Laboratory Systems, 50(1):1–18, 2000.

[93] E. De Mulder, B. Wyseur, F.-X. Standaert, and I. Verbauwhede. A
practical introduction to hardware security. In Fault Analysis in Cryp-
tography, pages 1–19. Springer, 2013.

[94] Amine Dehbaoui, Karim Tobich, Jean-Max Dutertre, and Assia Tria.
Electromagnetic fault injection: Towards a fault model on a 32-bit
microcontroller. In IEEE Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pages 7–15, 2012.

[95] Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a
framework for efficient mixed-protocol secure two-party computation.
In NDSS, 2015.

[96] Li Deng. The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE signal processing magazine,
29(6):141–142, 2012.

[97] Whitfield Diffie and Martin E. Hellman. New directions in cryptogra-
phy. IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[98] Jack Doerner, David Evans, and Abhi Shelat. Secure stable matching
at scale. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1602–1613, 2016.

[99] Zhiwei Du, Rodrigo Guerra, Shuangchen Li, Linghao Song, Xiaochen
Guo, and Yuan Xie. Shidiannao: Shifting vision processing closer to
the sensor. In Proceedings of the 42nd Annual International Symposium
on Computer Architecture (ISCA), pages 92–104. ACM, 2015.

[100] Richard Dubes and Anil K Jain. Cluster Analysis and Applications.
Prentice-Hall, 1980.

250

[101] Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cam-
marota, and Aydin Aysu. Modulonet: Neural networks meet modular
arithmetic for efficient hardware masking. IACR Trans. on Crypto-
graphic Hardware and Embedded Systems, pages 506–556, 2022.

[102] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. Bomanet: Boolean
masking of an entire neural network. In 2020 IEEE/ACM Intrl. Conf.
On Computer Aided Design (ICCAD), pages 1–9. IEEE, 2020.

[103] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. Maskednet: The
first hardware inference engine aiming power side-channel protection.
In 2020 IEEE Intrl. Symp. on Hardware Oriented Security and Trust
(HOST), pages 197–208. IEEE, 2020.

[104] Ferhat Erata, TingHung Chiu, Anthony Etim, Srilalith Nampally, Te-
jas Raju, Rajashree Ramu, Ruzica Piskac, Timos Antonopoulos, Wen-
jie Xiong, and Jakub Szefer. Systematic use of random self-reducibility
against physical attacks. arXiv preprint arXiv:2405.05193, 2024.

[105] Brian Everitt, Sabine Landau, Morven Leese, and Daniel Stahl. Cluster
Analysis. John Wiley & Sons, 2011.

[106] Ilya M Filanovsky and Aiman Allam. Mutual compensation of mobility
and threshold voltage temperature effects with applications in cmos
circuits. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 48(7):876–884, 2001.

[107] Renato Fogaça, Adriano Pereira, and Sergio Lima. Chiplet integra-
tion and packaging: Current trends and challenges. Microelectronics
Journal, 138:105987, 2023.

[108] Tore Kasper Frederiksen, Thomas P Jakobsen, Jesper Buus Nielsen,
and Roberto Trifiletti. Tinylego: An interactive garbling scheme for
maliciously secure two-party computation. Cryptology ePrint Archive,
2015.

[109] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen,
Peter Sebastian Nordholt, and Claudio Orlandi. Minilego: Efficient se-
cure two-party computation from general assumptions. In Advances
in Cryptology–EUROCRYPT 2013: 32nd Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,

251

Athens, Greece, May 26-30, 2013. Proceedings 32, pages 537–556.
Springer, 2013.

[110] Jean Pierre Gag, Christophe Paillard, Bruno Robisson, and Philippe
Maurine. Temperature impact on cmos logic gates. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 20(5):791–801, 2012.

[111] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electro-
magnetic analysis: Concrete results. International Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES), pages 251–261,
2001.

[112] Karla Gandolfi, Christophe Mourtel, and Francis Olivier. Electromag-
netic analysis: Concrete results. In Cryptographic Hardware and Em-
bedded Systems – CHES 2001, pages 251–261. Springer, 2001.

[113] Yansong Gao, Bao Gia Doan, Zhi Zhang, Siqi Ma, Jiliang Zhang, An-
min Fu, Surya Nepal, and Hyoungshick Kim. Backdoor attacks and
countermeasures on deep learning: A comprehensive review. arXiv
preprint arXiv:2007.10760, 2020.

[114] David Garcia, Gustavo Mariscal, Ramesh Karri, and Michail Mani-
atakos. Optimized memory allocation for side-channel protected im-
plementations on fpga. In Proceedings of the 2019 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays (FPGA),
pages 45–54. ACM, 2019.

[115] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova,
Jack Doerner, Samee Zahur, and David Evans. Privacy-preserving dis-
tributed linear regression on high-dimensional data. Proc. Priv. En-
hancing Technol., 2017(4):345–364, 2017.

[116] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contempo-
rary hardware. Journal of Cryptographic Engineering, 8:1–27, 2018.

[117] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and
Yuval Yarom. Ecdsa key extraction from mobile devices via nonin-
trusive physical side channels. In ACM Conference on Computer and
Communications Security (CCS), pages 1475–1490, 2018.

252

[118] Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key extraction via
low-bandwidth acoustic cryptanalysis. In Annual Cryptology Confer-
ence, pages 444–461. Springer, 2014.

[119] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis,
Stanford University, 2009. crypto.stanford.edu/craig.

[120] Craig Gentry. Fully homomorphic encryption using ideal lattices.
STOC, pages 169–178, 2009.

[121] Mohammed Gharib, Ali Owfi, and Soudeh Ghorbani. Kpsec: Se-
cure end-to-end communications for multi-hop wireless networks.
arXiv:1911.05126, 2019.

[122] Tarun Ghose and Rahul Singh. Beyond monolithic chips: The rise of
chiplet architectures. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, 30(12):3215–3230, 2022.

[123] Rajarshi Ghosh and Sudhakar Prasad. Chiplet-based architectures for
cloud computing and ai workloads. IEEE Cloud Computing, 8(2):56–
64, 2021.

[124] Benedikt Gierlichs, Lejla Batina, Bart Preneel, and Ingrid Ver-
bauwhede. Mutual information analysis: a generic side-channel dis-
tinguisher. International workshop on cryptographic hardware and em-
bedded systems, pages 426–442, 2008.

[125] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy. In
Intrl. Conf. on machine learning, pages 201–210. PMLR, 2016.

[126] Christophe Giraud. Differential fault analysis on aes key schedule and
countermeasures. International Conference on Smart Card Research
and Advanced Applications (CARDIS), pages 1–13, 2004.

[127] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse recti-
fier neural networks. Proceedings of the 14th International Conference
on Artificial Intelligence and Statistics (AISTATS), 15:315–323, 2011.

253

crypto.stanford.edu/craig

[128] David R Gnad and Mehdi B Tahoori. Analysis of power side-
channel leakage in fpga hardware. IEEE Transactions on Computers,
66(3):496–509, 2016.

[129] Oded Goldreich. The Foundations of Cryptography - Volume 2. Cam-
bridge University Press, 2004.

[130] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or a completeness theorem for protocols with honest ma-
jority. In Proceedings of the 19th Annual ACM Symposium on Theory
of Computing (STOC), pages 218–229. ACM, 1987.

[131] Oded Goldreich and Rafail Ostrovsky. Software protection and simu-
lation on oblivious rams. Journal of the ACM, 43(3):431–473, 1996.

[132] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. Reusable garbled circuits and suc-
cinct functional encryption. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pages 555–564, 2013.

[133] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-
time programs. In Annual Intrl. Cryptology Conf., pages 39–56.
Springer, 2008.

[134] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Knowl-
edge assumptions and their applications to cryptographic protocol de-
sign. SIAM Journal on Computing, 48(3):730–773, 2019.

[135] Shafi Goldwasser, Michael P Kim, Vinod Vaikuntanathan, and Or Za-
mir. Planting undetectable backdoors in machine learning models. In
2022 IEEE 63rd Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pages 931–942. IEEE, 2022.

[136] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal
of Computer and System Sciences, 28(2):270–299, 1982.

[137] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. In Proceedings of the 17th
Annual ACM Symposium on Theory of Computing (STOC), pages 291–
304. ACM, 1985.

254

[138] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016.

[139] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in Neural Information Processing
Systems (NeurIPS), pages 2672–2680, 2014.

[140] Adam Groce, Alex Ledger, Alex J Malozemoff, and Arkady Yerukhi-
movich. Compgc: Efficient offline/online semi-honest two-party com-
putation. Cryptology ePrint Archive, 2016.

[141] Daniel Gruss, Clément Maurice, Anders Fogh, Moritz Lipp, and Stefan
Mangard. Rowhammer.js: A remote software-induced fault attack in
javascript. Proceedings of the European Symposium on Research in
Computer Security (ESORICS), pages 300–321, 2016.

[142] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets:
Identifying vulnerabilities in the machine learning model supply chain.
arXiv preprint arXiv:1708.06733, 2017.

[143] Shay Gueron and Vlad Krasnov. Fast and side-channel resistant AES-
GCM using AVX instructions. In 2011 IEEE Symposium on Security
and Privacy Workshops, pages 19–25. IEEE, 2011.

[144] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast gar-
bling of circuits under standard assumptions. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 567–578, 2015.

[145] Ujjwal Guin, Ratnesh Singh, and Mark Tehranipoor. Counterfeit detec-
tion in chiplet-based systems: Challenges and solutions. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 26(7):1239–
1250, 2018.

[146] Chun Guo, Jonathan Katz, Xiao Wang, Chenkai Weng, and Yu Yu.
Better concrete security for half-gates garbling (in the multi-instance
setting). In Annual International Cryptology Conference, pages 793–
822. Springer, 2020.

255

[147] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure
multiparty computation from fixed-key block ciphers. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 825–841. IEEE, 2020.

[148] Trinabh Gupta, Henrique Fingler, Lorenzo Alvisi, and Michael Wal-
fish. Pretzel: Email encryption and provider-supplied functions are
compatible. In Proceedings of the Conference of the ACM Special In-
terest Group on Data Communication, pages 169–182, 2017.

[149] Shai Halevi and Jing Zhang. Homomorphic encryption for secure ai
inference in multi-chip modules. IEEE Transactions on Secure Com-
puting, 28(1):120–139, 2020.

[150] Hisashi Hanamura, Hiroshi Kitagawa, Akira Tsunoda, Noboru Asahi,
and Hiroyuki Sugiura. Operation of cmos circuits at cryogenic temper-
atures. IEEE Journal of Solid-State Circuits, 21(4):619–625, 1986.

[151] Markus Happe, Andreas Agne, Christian Plessl, and Marco Platzner.
Eight ways to put your fpga on fire–a systematic study of heat gener-
ators. In 2012 IEEE International Symposium on Field-Programmable
Custom Computing Machines, pages 199–206. IEEE, 2012.

[152] Tyler Harvey, Jonathan Koppel, and Daniel Koppel. Thermanator:
Thermal residue-based post factum attacks on keyboard password en-
try. In USENIX Workshop on Offensive Technologies (WOOT), 2018.

[153] Mohammad Hashemi, Domenic Forte, and Fatemeh Ganji. Time is
money, friend! timing side-channel attack against garbled circuit con-
structions. In International Conference on Applied Cryptography and
Network Security, pages 325–354. Springer, 2024.

[154] Mohammad Hashemi, Domenic J Forte, and Fatemeh Ganji. Guardian-
mpc: Backdoor-resilient neural network computation. IEEE Access,
2025.

[155] Mohammad Hashemi, Dev Mehta, Kyle Mitard, Shahin Tajik, and
Fatemeh Ganji. Faultygarble: Fault attack on secure multiparty neural
network inference. Cryptology ePrint Archive, 2024.

256

[156] Mohammad Hashemi, Steffi Roy, Domenic Forte, and Fatemeh Ganji.
Hwgn 2: Side-channel protected nns through secure and private func-
tion evaluation. In Security, Privacy, and Applied Cryptography Engi-
neering: 12th International Conference, SPACE 2022, Jaipur, India,
December 9–12, 2022, Proceedings, pages 225–248, 2022.

[157] Mohammad Hashemi, Steffi Roy, Fatemeh Ganji, and Domenic Forte.
Garbled eda: Privacy preserving electronic design automation. In
Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design, pages 1–9, 2022.

[158] Mohammad Hashemi, Shahin Tajik, and Fatemeh Ganji. Garblet:
Multi-party computation for protecting chiplet-based systems. Cryp-
tology ePrint Archive, 2025.

[159] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H
Friedman. The Elements of Statistical Learning: Data Mining, Infer-
ence, and Prediction, volume 2. Springer, 2009.

[160] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve
Zdancewic. Sok: General purpose compilers for secure multi-party
computation. In 2019 IEEE symposium on security and privacy (SP),
pages 1220–1237. IEEE, 2019.

[161] William Hatcher and Wei Yu. A survey of deep learning approaches
for network security. IEEE Communications Surveys & Tutorials,
21(1):18–43, 2018.

[162] John L Hennessy and David A Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 2017.

[163] Ehsan Hesamifard, Hassan Takabi, Mehdi Ghasemi, and C. Battaglino.
Privacy-preserving machine learning as a service. Proceedings on Pri-
vacy Enhancing Technologies, 2018(3):123–142, 2018.

[164] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Applications of
machine learning techniques in side-channel attacks: a survey. J. of
Cryptographic Engineering, 10(2):135–162, 2020.

257

[165] Benjamin Hettwer, Johannes Heyszl, and Georg Sigl. Differential clus-
ter analysis. International Conference on Smart Card Research and
Advanced Applications, pages 19–35, 2019.

[166] Annelie Heuser and Michael Zohner. Intelligent machine homicide.
In Intrl. WKSP on Constructive Side-Channel Analysis and Secure
Design, pages 249–264. Springer, 2012.

[167] Sanghyun Hong, Nicholas Carlini, and Alexey Kurakin. Handcrafted
backdoors in deep neural networks. Advances in Neural Information
Processing Systems, 35:8068–8080, 2022.

[168] Md Hoque and Redwan Hasan. Hardware trojans in chiplet architec-
tures: Threats and countermeasures. ACM Transactions on Embedded
Computing Systems, 20(6):1–24, 2021.

[169] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Ver-
bauwhede, and Joos Vandewalle. Machine learning in side-channel
analysis: A first study. J. of Cryptographic Engineering, 1(4):293, 2011.

[170] Xiaolu Hou, Bin Wang, Xiapu Xu, Patrick Lin, and Xiaosong Du.
Security analysis of deep learning models against side-channel attacks.
IEEE Transactions on Information Forensics and Security, 15:2119–
2131, 2020.

[171] Licheng Hu, Jinyi Wang, Mingjie Liang, and Patrick Schaumont. Time-
Crypt: Efficient timing channel protection for hardware and software
enclaves. In 2019 IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST), pages 161–171. IEEE, 2019.

[172] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan,
and Alex J. Malozemof. Amortizing garbled circuits. In Annual Cryp-
tology Conf., pages 458–475. Springer, 2014.

[173] Siam Hussain, Baiyu Li, Farinaz Koushanfar, and Rosario Cammarota.
Tinygarble2: Smart, efficient, and scalable yao’s garble circuit. In
Proc. of the 2020 WKSP on Privacy-Preserving Machine Learning in
Practice, pages 65–67, 2020.

[174] Siam U Hussain and Farinaz Koushanfar. Fase: Fpga acceleration of
secure function evaluation. In 2019 IEEE 27th Annual Intrl. Symp.

258

on Field-Programmable Custom Computing Machines (FCCM), pages
280–288. IEEE, 2019.

[175] IEEE Standards Association. IEEE Standard for Encryption and
Management of Electronic Design Intellectual Property (IP). https:

//standards.ieee.org/ieee/1735/5774/, 2016. IEEE Standard
P1735-2016.

[176] Sagar Imambi, Kolla Bhanu Prakash, and GR Kanagachidambaresan.
Pytorch. Programming with TensorFlow: solution for edge computing
applications, pages 87–104, 2021.

[177] Kazuya Imamura, Kazuhiko Minematsu, and Tetsu Iwata. Integrity
analysis of authenticated encryption based on stream ciphers. In Prov-
able Security (ProvSec 2016), pages 257–276. Springer, 2016.

[178] Xilinx Inc. Axi reference guide for ultrascale+ fpga architecture, 2021.
Accessed: 2025-02-28.

[179] Xilinx Inc. Ultrascale architecture and product data sheet: Overview,
2021. Accessed: 2025-02-28.

[180] Xilinx Inc. Ultrascale+ fpga chiplet-based design and communication
protocols, 2021. Accessed: 2025-02-28.

[181] Xilinx Inc. Ultrascale+ fpga product selection guide, 2021. Accessed:
2025-02-28.

[182] Xilinx Inc. Xilinx power estimator (xpe) user guide. https://www.

xilinx.com/products/design-tools/power/xpe.html, 2024.

[183] Intel Corporation. Intel® CoreTM i7 Processors. [Online]https:

//www.intel.com/content/www/us/en/products/details/

processors/core/i7.html [Accessed: Oct.16, 2024], 2017.

[184] Intel Corporation. Intel optimization manual. https://software.

intel.com/en-us/articles/intel-optimization-manual, 2020.

[185] Intel Corporation. Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, 2022. Volume 1: Basic Architecture.

259

https://standards.ieee.org/ieee/1735/5774/
https://standards.ieee.org/ieee/1735/5774/
https://www.xilinx.com/products/design-tools/power/xpe.html
https://www.xilinx.com/products/design-tools/power/xpe.html
[Online] https://www.intel.com/content/www/us/en/products/details/processors/core/i7.html
[Online] https://www.intel.com/content/www/us/en/products/details/processors/core/i7.html
[Online] https://www.intel.com/content/www/us/en/products/details/processors/core/i7.html
https://software.intel.com/en-us/articles/intel-optimization-manual
https://software.intel.com/en-us/articles/intel-optimization-manual

[186] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Wait a minute! A fast, cross-vm attack on aes. In Research in
Attacks, Intrusions and Defenses - RAID 2014, volume 8688 of Lecture
Notes in Computer Science, pages 299–319. Springer, 2014.

[187] irdan. Justgarble framework. [Online]https://github.com/irdan/

justGarble [Accessed Jan.30, 2023], 2014.

[188] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending
oblivious transfers efficiently. In Advances in Cryptology – CRYPTO
2003, pages 145–161. Springer, 2003.

[189] Matthew Jagielski, Giorgio Severi, Niklas Pousette Harger, and Alina
Oprea. Subpopulation data poisoning attacks. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 3104–3122, 2021.

[190] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data clus-
tering: A review. ACM Computing Surveys (CSUR), 31(3):264–323,
1999.

[191] Jan Jancar. The state of tooling for verifying constant-timeness of
cryptographic implementations. [Online]https://neuromancer.sk/

article/26 [Accessed: Oct.16, 2024], 2021.

[192] Kimmo Järvinen, Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and
Thomas Schneider. Garbled circuits for leakage-resilience: Hardware
implementation and evaluation of one-time programs. In Intrl. WKSP
on Cryptographic Hardware and Embedded Systems, pages 383–397.
Springer, 2010.

[193] Bargav Jayaraman, Hannah Li, and David Evans. Decentralized cer-
tificate authorities. arXiv preprint arXiv:1706.03370, 2017.

[194] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
{GAZELLE}: A low latency framework for secure neural network in-
ference. In 27th USENIX Security Symp. (USENIX Security 18), pages
1651–1669, 2018.

260

[Online] https://github.com/irdan/justGarble
[Online] https://github.com/irdan/justGarble
[Online] https://neuromancer.sk/article/26
[Online] https://neuromancer.sk/article/26

[195] Ankur Kalra and Mukesh Kumar Sharma. Effect of temperature vari-
ation on cmos delay and leakage. International Journal of VLSI design
& Communication Systems, 4(4):1, 2013.

[196] Seny Kamara and Mariana Raykova. Secure outsourced computation in
a multi-tenant cloud. In International Conference on Financial Cryp-
tography and Data Security (FC), pages 26–44. Springer, 2012.

[197] Lars Kamm, Rainer Biehl, Matthias Dankar, and Jean-Pierre Hubaux.
Secure multiparty computation for genomics: Private set intersection
and population stratification. Proceedings on Privacy Enhancing Tech-
nologies (PoPETs), 2015(1):133–147, 2015.

[198] Gerry Kane. mips RISC Architecture. Prentice-Hall, Inc., 1988.

[199] Ramesh Karri, Jiang Hu, Prabhat Mishra, and Yier Jin. Fault-based at-
tack detection in cryptographic hardware. IEEE Computer, 43(11):76–
82, 2010.

[200] Jonathan Katz and Lior Malka. Constant-round private function eval-
uation with linear complexity. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques (EURO-
CRYPT), pages 556–571. Springer, 2014.

[201] Leonard Kaufman and Peter J Rousseeuw. Finding Groups in Data:
An Introduction to Cluster Analysis. John Wiley & Sons, 2009.

[202] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Motion: A frame-
work for mixed-protocol secure computation. Proceedings on Privacy
Enhancing Technologies (PoPETs), 2020(2):173–190, 2020.

[203] Joe Kilian. Founding crytpography on oblivious transfer. In Proc. of
the annual ACM Symp. on Theory of computing, pages 20–31, 1988.

[204] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan
Hanjalic. Make some noise. unleashing the power of convolutional neu-
ral networks for profiled side-channel analysis. IACR Trans. on Cryp-
tographic Hardware and Embedded Systems, pages 148–179, 2019.

261

[205] Yoongu Kim, Ross Daly, Jeremie Kim, Onur Mutlu, and Vijay Se-
shadri. Flipping bits in memory without accessing them: An experi-
mental study of dram disturbance errors. ACM SIGARCH Computer
Architecture News, 42(3):361–372, 2014.

[206] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[207] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution.
Communications of the ACM, 63(7):93–101, 2020.

[208] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Ex-
ploiting speculative execution. In Proceedings of the 40th IEEE Sym-
posium on Security and Privacy (S&P), pages 19–37, 2019.

[209] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Annual International Cryptology
Conference, pages 104–113. Springer, 1996.

[210] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Advances in Cryptology - CRYPTO 1999, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, pages 388–397. Springer, 1999.

[211] Vladimir Kolesnikov and Sai Mohan Kumaresan. Improved ot exten-
sion for transferring short secrets. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology – CRYPTO 2015, volume
9216 of Lecture Notes in Computer Science, pages 54–70. Springer,
2015.

[212] Vladimir Kolesnikov, Mike Rosulek, and Ni Trieu. Duplo: Efficient
multi-party computation benchmarking and its application to hard-
ware design. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 509–526. ACM,
2017.

262

[213] Vladimir Kolesnikov, Mike Rosulek, and Ni Trieu. Practical multi-
party private set intersection from symmetric-key techniques. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), pages 1257–1272. ACM, 2018.

[214] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit:
Free xor gates and applications. In Intrl. Colloquium on Automata,
Languages, and Programming, pages 486–498. Springer, 2008.

[215] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh.
{SWIFT}: Super-fast and robust {Privacy-Preserving} machine learn-
ing. In 30th USENIX Security Symposium (USENIX Security 21),
pages 2651–2668, 2021.

[216] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems (NeurIPS), pages 1097–1105,
2012.

[217] Naveen Kumar and Divya Gupta. Efficient secure multiparty compu-
tation: Theory, practice, and applications. ACM Computing Surveys,
54(2):1–36, 2021.

[218] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed:
Single database, computationally-private information retrieval. IEEE
Symposium on Foundations of Computer Science (FOCS), pages 364–
373, 1997.

[219] Chun-Hao Lai, Jishen Zhao, and Chia-Lin Yang. Leave the cache hi-
erarchy operation as it is: A new persistent memory accelerating ap-
proach. In Proceedings of the 54th Annual Design Automation Confer-
ence 2017, pages 1–6, 2017.

[220] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436–444, 2015.

[221] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proc. of the
IEEE, 86(11):2278–2324, 1998.

263

[222] Ryan Lehmkuhl, Pratyush Mishra, Akshayaram Srinivasan, and
Raluca Ada Popa. Muse: Secure inference resilient to malicious clients.
In USENIX Security Symposium, pages 2201–2218, 2021.

[223] Itamar Levi and Carmit Hazay. Garbled-circuits from an sca perspec-
tive: Free xor can be quite expensive... Cryptology ePrint Archive,
2022.

[224] Shuang Li, Yannan Wu, Xuan Zhao, Yinan Bao, and Wei Zhang.
Chiplet: A new paradigm in high-performance secure computing. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 39(12):4314–4327, 2020.

[225] Y Lindell and B Pinkas. A proof of yao’s protocol for secure two-
party computation. eccc report tr04-063. In Electronic Colloquium on
Computational Complexity (ECCC), 2004.

[226] Yehuda Lindell. Fast cut-and-choose-based protocols for malicious and
covert adversaries. J. of Cryptology, 29(2):456–490, 2016.

[227] Yehuda Lindell. Secure multiparty computation. Communications of
the ACM, 64(1):86–96, 2020.

[228] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure
two-party computation in the presence of malicious adversaries. In
Advances in Cryptology-EUROCRYPT 2007: 26th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Barcelona, Spain, May 20-24, 2007. Proceedings 26, pages
52–78. Springer, 2007.

[229] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol
for two-party computation. J. of cryptology, 22(2):161–188, 2009.

[230] Yehuda Lindell and Benny Pinkas. Secure two-party computation via
cut-and-choose oblivious transfer. Journal of cryptology, 25:680–722,
2012.

[231] Yehuda Lindell, Benny Pinkas, Nigel P Smart, and Avishay Yanai.
Efficient constant-round multi-party computation combining bmr and
spdz. J. of Cryptology, 32(3):1026–1069, 2019.

264

[232] Yehuda Lindell and Ben Riva. Cut-and-choose yao-based secure
computation in the online/offline and batch settings. In Advances
in Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II
34, pages 476–494. Springer, 2014.

[233] Yehuda Lindell and Ben Riva. Blazing fast 2pc in the offline/online
setting with security for malicious adversaries. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 579–590, 2015.

[234] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais,
Clémentine Maurice, and Daniel Gruss. Take a way: Exploring the
security implications of amd’s cache way predictors. In Proceedings
of the 15th ACM Asia Conference on Computer and Communications
Security, pages 813–825, 2020.

[235] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Cather-
ine Easdon, Claudio Canella, and Daniel Gruss. Platypus: Software-
based power side-channel attacks on x86. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 355–371. IEEE, 2021.

[236] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading ker-
nel memory from user space. In 27th USENIX Security Symposium
(USENIX Security), pages 973–990, 2018.

[237] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
Last-level cache side-channel attacks are practical. In 2015 IEEE sym-
posium on security and privacy, pages 605–622. IEEE, 2015.

[238] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural
network predictions via minionn transformations. In Proc. of the 2017
ACM SIGSAC Conf. on computer and Comm. security, pages 619–631,
2017.

[239] Shuo Liu, Jian Liu, and Neil Zhenqiang Gong. Feature inference attacks
against model partitioning. IEEE Symposium on Security and Privacy
(S&P), pages 2386–2402, 2022.

265

[240] Yuntao Liu, Dana Dachman-Soled, and Ankur Srivastava. Mitigating
reverse engineering attacks on deep neural networks. In 2019 IEEE
Computer Society Annual Symp. on VLSI (ISVLSI), pages 657–662.
IEEE, 2019.

[241] Zhiyuan Liu, Haoran Zhao, and Qiang Feng. Heterogeneous chiplet
integration: Trends and prospects. IEEE Transactions on Electron
Devices, 70(2):1084–1096, 2023.

[242] Joe Loughry and David A Umphress. Information leakage from optical
emanations. ACM Transactions on Information and System Security
(TISSEC), 5(3):262–289, 2002.

[243] Yangdi Lyu and Prabhat Mishra. A survey of side-channel attacks
on caches and countermeasures. Journal of Hardware and Systems
Security, 2(1):33–50, 2018.

[244] Pieter Maene, Bart Coppens, and Ingrid Verbauwhede. Hardware-
based fault injection attacks and countermeasures. IEEE Transactions
on Secure Computing, 15(4):1431–1444, 2017.

[245] Kiwan Maeng and G Edward Suh. Approximating relu on a re-
duced ring for efficient mpc-based private inference. arXiv preprint
arXiv:2309.04875, 2023.

[246] A.J Malozemoff, X Wang, and J Katz. Emp-toolkit framework.
[Online]https://github.com/emp-toolkit [Accessed Jan.30, 2023],
2022.

[247] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards. Springer, 2007.

[248] Zoltán Ádám Mann, Christian Weinert, Daphnee Chabal, and Joppe W
Bos. Towards practical secure neural network inference: the journey so
far and the road ahead. ACM Computing Surveys, 56(5):1–37, 2023.

[249] Heiko Mantel, Alexander Weber, and Daniel Taha. Using pca to en-
hance side-channel evaluations. Journal of Cryptographic Engineering,
7(4):339–357, 2017.

266

[Online] https://github.com/emp-toolkit

[250] Robert Martin, John Demme, and Simha Sethumadhavan. Timewarp:
Rethinking timekeeping and performance monitoring mechanisms to
mitigate side-channel attacks. In 2012 39th Annual International Sym-
posium on Computer Architecture (ISCA), pages 118–129. IEEE, 2012.

[251] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The Bulletin of Mathematical Bio-
physics, 5:115–133, 1943.

[252] Frank McKeen, Ilya Alexandrovich, Isaac Berenzon, Carlos Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday Savagaonkar. Inno-
vative instructions and software model for isolated execution. Proceed-
ings of the 2nd International Workshop on Hardware and Architectural
Support for Security and Privacy (HASP), pages 1–10, 2013.

[253] Dev M Mehta, Mohammad Hashemi, David S Koblah, Domenic Forte,
and Fatemeh Ganji. Bake it till you make it: Heat-induced power
leakage from masked neural networks. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2024(4):569–609, 2024.

[254] Rahul Mehta, Philip Karanja, Fawad Ahmad, Sanu Mohan, and Umit
Ogras. Bake: Breaking ai-based key extraction with fault injection
attacks. IEEE Transactions on Dependable and Secure Computing,
2023.

[255] Fabio Merli, Klaus Schindler, David Oswald, and Christof Paar. Side-
channel attacks on cryptographic software: A systematic analysis of the
major software countermeasures against side-channel attacks. IEEE
Transactions on Information Forensics and Security, 8(1):67–81, 2013.

[256] Abdullah Mesbah, Saurabh Bagchi, and Anand Raghunathan. Investi-
gation of power side-channel leakage in hardware masking schemes. In
Proceedings of the 54th Annual Design Automation Conference (DAC),
pages 1–6. ACM, 2017.

[257] Thomas S. Messerges. Using second-order power analysis to attack dpa
resistant software. International Workshop on Cryptographic Hardware
and Embedded Systems (CHES), pages 238–251, 2000.

267

[258] Gabriel Miranda, Saurabh Das, and Yu Wang. Chiplet-based architec-
tures: Opportunities and challenges. IEEE Design & Test, 39(3):56–65,
2022.

[259] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan.
Computational differential privacy. In Advances in Cryptology -
CRYPTO 2011, pages 126–142. Springer, 2011.

[260] Pratyush Mishra, Xiao Wang, Chang Liu, Matt Fredrikson, and Anu-
pam Datta. Delphi: A cryptographic inference service for neural net-
works. In USENIX Security Symposium, pages 2505–2522, 2020.

[261] Sparsh Mittal, Himanshi Gupta, and Srishti Srivastava. A survey on
hardware security of DNN models and accelerators. J. of Systems Ar-
chitecture, 117:102163, 2021.

[262] Fan Mo, My T. Thai, Mehdi Nematollahi, Anupam Chattopadhyay,
Prateek Saxena, and Jian Liu. Haac: Hardware-assisted efficient
and scalable secure inference with homomorphic encryption. CoRR,
abs/2301.12994, 2023.

[263] Ahmad Moghimi and Berk Sunar. Cachezoom: How SGX amplifies
the power of cache attacks. In Cryptographic Hardware and Embedded
Systems - CHES 2017, volume 10529 of Lecture Notes in Computer
Science, pages 69–90. Springer, 2017.

[264] Payman Mohassel and Peter Rindal. Fast and secure three-party com-
putation: The garbled circuit approach. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 591–602. ACM, 2014.

[265] Payman Mohassel, Peter Rindal, and Mike Rosulek. Fast and secure
three-party computation: The garbled circuit approach. In ACM Con-
ference on Computer and Communications Security (CCS), pages 591–
608, 2018.

[266] Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-
party computation: The garbled circuit approach. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 591–602, 2015.

268

[267] Payman Mohassel and Yupeng Zhang. Secureml: A system for scal-
able privacy-preserving machine learning. In 2017 IEEE symposium on
security and privacy (SP), pages 19–38. IEEE, 2017.

[268] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and
Pascal Frossard. Universal adversarial perturbations. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
1765–1773, 2017.

[269] Amir Moradi, Markus Kasper, and Christof Paar. Em side-channel at-
tacks on commercial contactless smartcards using low-cost equipment.
Financial Cryptography and Data Security, 15:79–99, 2016.

[270] Maria Mushtaq, Muhammad Asim Mukhtar, Vianney Lapotre,
Muhammad Khurram Bhatti, and Guy Gogniat. Winter is here! a
decade of cache-based side-channel attacks, detection & mitigation for
RSA. Information Systems, 92:101524, 2020.

[271] Mohammed Nabeel, Mohammed Ashraf, Satwik Patnaik, Vassos So-
teriou, Ozgur Sinanoglu, and Johann Knechtel. 2.5d root of trust:
Secure system-level integration of untrusted chiplets. https://arxiv.
org/abs/2009.02412, 2020. Accessed: 2025-04-17.

[272] Ram Nagarajan and Pranav Pillai. Hardware root-of-trust architec-
tures for chiplet-based security. IEEE Transactions on Embedded Sys-
tems Security, 18:51–68, 2022.

[273] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th International
Conference on Machine Learning (ICML), pages 807–814, 2010.

[274] Aoi Nakamoto. W-shield: Protection against cryptocurrency wallet cre-
dential stealing. In Workshop on Security and Privacy in E-Commerce
2018, pages 71–107, 2018.

[275] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols.
In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 448–457. Society for Industrial and Applied
Mathematics, 2001.

269

https://arxiv.org/abs/2009.02412
https://arxiv.org/abs/2009.02412

[276] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving
auctions and mechanism design. In Proceedings of the 1st ACM Con-
ference on Electronic Commerce, pages 129–139, 1999.

[277] Ajay Nayak and Ramesh Lalgudi. Accurate delay measurement in
logic circuits using tester-per-pin timing measurement capability. IEEE
Transactions on Components and Packaging Technologies, 25(4):705–
712, 2002.

[278] Paarth Neekhara, Shehzeen Hussain, Prakhar Pandey, Shlomo Dub-
nov, Julian McAuley, and Farinaz Koushanfar. Universal adver-
sarial perturbations for speech recognition systems. arXiv preprint
arXiv:1905.03828, 2019.

[279] Lucien KL Ng and Sherman SM Chow. Sok: Cryptographic neural-
network computation. In 2023 IEEE Symposium on Security and Pri-
vacy (SP), pages 497–514. IEEE, 2023.

[280] Jesper Buus Nielsen and Claudio Orlandi. Lego for two-party secure
computation. In Theory of Cryptography Conference, pages 368–386.
Springer, 2009.

[281] Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Con-
stant round maliciously secure 2pc with function-independent prepro-
cessing using lego. Cryptology ePrint Archive, 2016.

[282] Valeria Nikolaenko, Siddharth Jaggi, Sriram Rajamani, Mario
Schapira, Amit Sahai, and Srinath Setty. Privacy-preserving ridge re-
gression on hundreds of millions of records. In IEEE Symposium on
Security and Privacy (SP), pages 334–348, 2013.

[283] Monique Ogburn, Claude Turner, and Pushkar Dahal. Homomorphic
encryption. Procedia Computer Science, 20:502–509, 2013.

[284] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of pail-
lier: homomorphic secret sharing and public-key silent ot. In Advances
in Cryptology–EUROCRYPT 2021: 40th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, October 17–21, 2021, Proceedings, Part I 40, pages
678–708. Springer, 2021.

270

[285] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: the case of aes. In Cryptographers’ Track at the RSA
Conference, pages 1–20. Springer, 2006.

[286] Elisabeth Oswald, Stefan Mangard, Norbert Pramstaller, and Vincent
Rijmen. A practical second-order dpa attack on aes. International Con-
ference on Cryptographic Hardware and Embedded Systems (CHES),
pages 192–205, 2006.

[287] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks
against machine learning. In Proceedings of the 2017 ACM on Asia
conference on computer and communications security, pages 506–519,
2017.

[288] Rakesh Patel and Kumar Ramesh. Physically unclonable functions
(pufs) for chiplet authentication. IEEE Transactions on Secure Hard-
ware, 34:23–40, 2023.

[289] Vivek Patil and Amit Bhardwaj. Chiplet-based architectures in next-
generation high-performance computing. IEEE Transactions on Com-
puters, 71(8):2234–2247, 2022.

[290] Arpita Patra and Divya Ravi. On the exact round complexity of secure
three-party computation. In Advances in Cryptology – CRYPTO 2019,
pages 425–458. Springer, 2019.

[291] Arpita Patra and Ajith Suresh. Blaze: Blazing fast privacy-preserving
machine learning. Cryptology ePrint Archive, Paper 2020/042, 2020.
https://eprint.iacr.org/2020/042.

[292] David A. Patterson and John L. Hennessy. Computer Organization
and Design: The Hardware/Software Interface. Morgan Kaufmann, 2
edition, 1998.

[293] Daniel Pawlowski and Richard Thompson. Power-efficient computing
with chiplets. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 37(11):3123–3135, 2018.

271

https://eprint.iacr.org/2020/042

[294] Mark Pawlowski and Xiaolong Liu. Zero-trust architectures for multi-
chip security. IEEE Transactions on Secure Systems, 30(4):899–913,
2022.

[295] Eric Peeters, François-Xavier Standaert, and Jean-Jacques Quisquater.
Power and electromagnetic analysis: Improved model, consequences
and comparisons. Integration, 40(1):52–60, 2007.

[296] Chris Peikert. A decade of lattice cryptography. Foundations and
Trends in Theoretical Computer Science, 10(4):283–424, 2016.

[297] Colin Percival. Cache missing for fun and profit, 2005.

[298] Yuval Peres. Iterating von neumann’s procedure for extracting random
bits. The Annals of Statistics, pages 590–597, 1992.

[299] Benny Pinkas, Thomas Schneider, Nigel P Smart, and Stephen C
Williams. Secure two-party computation is practical. In Intrl. Conf.
on the theory and application of cryptology and information security,
pages 250–267. Springer, 2009.

[300] Jesse Pool, Ian Sin Kwok Wong, and David Lie. Relaxed determinism:
Making redundant execution on multiprocessors practical. In Proceed-
ings of the 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’07), 2007.

[301] Michael O. Rabin. How to exchange secrets by oblivious transfer. Tech-
nical Report TR-81, Aiken Computation Laboratory, Harvard Univer-
sity, 1981. Unpublished manuscript.

[302] Farhan Rahman and Di Wang. Secure boot and firmware verification
in chiplet-based systems. IEEE Transactions on Embedded Security,
15:321–336, 2020.

[303] Md Tauhidur Rahman and [Co-authors]. Security implications of
chiplet-based architectures. In IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), pages 1001–1015,
2022.

[304] Shoaib Rahman and Amit Kumar. Secure execution models for chiplet-
based computing. ACM Transactions on Secure Hardware, 14(3):1–19,
2021.

272

[305] Jeyavijayan Rajendran, Hao Zhang, Cheng Zhang, Garrett S Rose,
Ruben Pino, and Ramesh Karri. Security analysis of logic obfusca-
tion. In Proceedings of the 50th Annual Design Automation Conference,
pages 1–9, 2013.

[306] Jeffrey Ramey and John Clark. Chiplet-based processors: A paradigm
shift in computing. IEEE Spectrum, 58(4):44–51, 2021.

[307] Samuel Ramjam, Bin Tan, and Philip Johnson. Fault injection and
detection for deep neural networks. In IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), 2020.

[308] Anusha Ranganathan, Thomas Schneider, and Oleksandr Tkachenko.
Hardware Oblivious Transfer accelerator for Privacy-Preserving Pro-
tocols. In 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1484–1489. IEEE, 2021.

[309] Rangharajan V Rao, Hiroshi Kodama, Tatsuya Okuda, Young-Joo
Woo, and Hiroshi Satoh. Heterogeneous integration for performance
and reliability: From fundamentals to applications. Microelectronics
Reliability, 125:114327, 2021.

[310] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chan-
dran, Divya Gupta, Aseem Rastogi, and Rahul Sharma. Crypt-
flow2: Practical 2-party secure inference. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Secu-
rity, pages 325–342, 2020.

[311] Pratik Ravi and Joshua Shen. Adaptive security mechanisms for dy-
namic reconfiguration of chiplets. IEEE Transactions on Secure Archi-
tectures, 40(3):210–225, 2022.

[312] Rehan Raza and Shahid Ahmed. Chiplet-based security: Fault injec-
tion and countermeasures. IEEE Transactions on Circuits and Systems
II, 68(9):2143–2154, 2021.

[313] Kaveh Razavi, Erik Bosman, and Herbert Bos. Flip feng shui: Ham-
mering a needle in the software stack. USENIX Security Symposium,
pages 1–18, 2016.

273

[314] Tao Ren and Fang He. Trusted execution frameworks for chiplet-based
processors. Journal of Secure Computing, 28:15–29, 2021.

[315] Steve Rhoads. Plasma - most mips i(tm) opcodes. https://

opencores.org/projects/plasma, 2001. Last accessed: Jan. 30, 2023.

[316] M. Sadegh Riazi, Siam U Hussain, and Farinaz Koushanfar. Chiplet-
based secure processing: Challenges and opportunities. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 123–130. IEEE,
2021.

[317] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin
Lauter, and Farinaz Koushanfar. {XONN}:{XNOR-based} oblivi-
ous deep neural network inference. In 28th USENIX Security Symp.
(USENIX Security 19), pages 1501–1518, 2019.

[318] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M
Songhori, Thomas Schneider, and Farinaz Koushanfar. Chameleon: A
hybrid secure computation framework for machine learning applica-
tions. In Proc. of the 2018 on Asia Conf. on computer and Comm.
security, pages 707–721, 2018.

[319] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko,
Ebrahim M. Songhori, Thomas Schneider, and Farinaz Koushanfar.
Privpy: General and scalable privacy-preserving computation with se-
cure multi-party computation. In USENIX Security, pages 585–602,
2019.

[320] Mohammad Sadegh Riazi, Amit Sahai, and Samee Zahur. Ram-sc:
Faster garbled circuits for ram programs. In International Conference
on Theory and Practice of Public Key Cryptography, pages 94–124.
Springer, 2019.

[321] Riscure. Side-channel and fault injection attacks: Real-world threats
and countermeasures. Technical report, Riscure Security Research,
2021.

[322] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communi-
cations of the ACM, 21(2):120–126, 1978.

274

https://opencores.org/projects/plasma
https://opencores.org/projects/plasma

[323] M. Robert, P. Maurine, and A. Razafindraibe. Design and analysis
of dual-rail circuits for security applications. IEEE Transactions on
Computers, 54(4):438–451, 2005.

[324] Daniel Rosenberg and Jeremy Lau. Modular computing with chiplets:
A new design paradigm. IEEE Transactions on Circuits and Systems
I: Regular Papers, 69(3):1012–1023, 2022.

[325] Frank Rosenblatt. The perceptron: A probabilistic model for infor-
mation storage and organization in the brain. Psychological Review,
65(6):386–408, 1958.

[326] Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. Hard-
ware security: Threat models and metrics. Proceedings of the IEEE,
102(8):1283–1295, 2013.

[327] Bita Darvish Rouhani, Siam Umar Hussain, Kristin Lauter, and Fari-
naz Koushanfar. Redcrypt: Real-time privacy-preserving deep learning
inference in clouds using fpgas. ACM Trans. on Reconfigurable Tech-
nology and Systems (TRETS), 11(3):1–21, 2018.

[328] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar.
Deepsecure: Scalable provably-secure deep learning. In Proc. of the
55th annual design automation Conf., pages 1–6, 2018.

[329] Jeyavijayan Roy, Farinaz Koushanfar, and Igor L Markov. Ending
piracy of integrated circuits. Computer, 41(10):30–38, 2008.

[330] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learn-
ing representations by back-propagating errors. Nature, 323(6088):533–
536, 1986.

[331] Ahmed Salem, Michael Backes, and Yang Zhang. Don’t trigger me!
a triggerless backdoor attack against deep neural networks. arXiv
preprint arXiv:2010.03282, 2020.

[332] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas De-
vadas, Ronald Dreslinski, Christopher Peikert, and Daniel Sanchez.
F1: A fast and programmable accelerator for fully homomorphic en-
cryption. In MICRO-54: 54th Annual IEEE/ACM Intrl. Symp. on
Microarchitecture, pages 238–252, 2021.

275

[333] Tim Sander, Marcel Keller, and Alexander Taylor. Dash: Effi-
cient privacy-preserving machine learning using oblivious computation.
ACM Transactions on Privacy and Security, 2023.

[334] Falk Schellenberg, Dennis RE Gnad, Amir Moradi, and Mehdi B
Tahoori. An inside job: Remote power analysis attacks on fpgas.
In 2018 Design, Automation & Test in Europe Conf. & Exhibition
(DATE), pages 1111–1116. IEEE, 2018.

[335] Werner Schindler, Karl Lemke, and Christof Paar. A stochastic model
for differential side channel cryptanalysis. IACR Cryptology ePrint
Archive, 2005:54, 2005.

[336] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic
model for differential side channel cryptanalysis. In Intrl. WKSP on
Cryptographic Hardware and Embedded Systems, pages 30–46. Springer,
2005.

[337] J-M Schmidt, Christof Paar, Johannes Heyszl, and Georg Sigl. Op-
tical side-channel attacks. In 2009 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), pages 77–84. IEEE, 2009.

[338] Johannes Schmidt, Michael Hutter, Werner Schindler, and Thomas
Plos. Optical fault induction attacks on secure integrated circuits. In
12th International Workshop on Cryptographic Hardware and Embed-
ded Systems – CHES 2007, pages 2–12. Springer, 2007.

[339] Julian Schmidt, Thomas Plos, Christoph Helfmeier, and Markus
Bochum. Optical side-channel attacks. Springer Journal on Hardware
Security and Trust, 4(2):92–103, 2011.

[340] Thomas Schneider and Amir Moradi. Dpa, leakage estimation, and
leakage resilience. International Workshop on Cryptographic Hardware
and Embedded Systems (CHES), pages 57–69, 2004.

[341] Thomas Schneider and Amir Moradi. A leakage model for standard
side-channel attacks. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2015(2):238–256, 2015.

276

[342] Thomas Schneider, Andy Rupp, and Emmanuel Prouff. Efficiently
masking aes for hardware and software implementations. In Crypto-
graphic Hardware and Embedded Systems - CHES 2016, pages 119–140.
Springer, 2016.

[343] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. Automated de-
tection, exploitation, and elimination of double-fetch bugs using mod-
ern cpu features. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, pages 587–600, 2018.

[344] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware guard extension: Using SGX to conceal
cache attacks. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 3–24. Springer,
2017.

[345] Paul Sedcole, Peter YK Cheung, Wayne Luk, and Thomas Becker.
Within-die delay variability in 90 nm fpgas and beyond. Field-
Programmable Custom Computing Machines, 2006:129–138, 2006.

[346] Benjamin Seifert and Ali Khosravi. Efficient side-channel attack coun-
termeasures for chiplet-based architectures. IEEE Transactions on In-
formation Forensics and Security, 17:1205–1219, 2022.

[347] Paul Selmke, Martijn R. B. Schut, Marc Fyrbiak, and Christof Paar.
Electromagnetic fault attacks: Concrete results. In Fault Diagnosis
and Tolerance in Cryptography (FDTC), 2016 Workshop on, pages 3–
13. IEEE, 2016.

[348] Adeel Shahid and Rehman Khan. Boot-time security for heterogeneous
chiplet architectures. Journal of Trusted Computing, 13:92–105, 2021.

[349] John Shalf. The future of computing beyond moore’s law. Philosophical
Transactions of the Royal Society A, 378(2166):20190061, 2020.

[350] Abhi Shelat and Chih-Hao Shen. Two-output secure computation with
malicious adversaries. In Advances in Cryptology–EUROCRYPT 2011:
30th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Pro-
ceedings 30, pages 386–405. Springer, 2011.

277

[351] Hanif D Sherali and Cihan H Tuncbilek. A squared-euclidean dis-
tance location-allocation problem. Naval Research Logistics (NRL),
39(4):447–469, 1992.

[352] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models. In
IEEE Symposium on Security and Privacy (SP), pages 3–18, 2017.

[353] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin,
Yossi Oren, and Yuval Yarom. Prime+Probe 1, JavaScript 0: Overcom-
ing browser-based Side-Channel defenses. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2863–2880, 2021.

[354] Sergei Skorobogatov. Semi-Invasive Attacks: A New Approach to Hard-
ware Security Analysis, volume 21 of Springer Series in Advances in
Information Security. Springer, 2010.

[355] Sergei Skorobogatov. Semi-invasive attacks—a new approach to hard-
ware security analysis. Technical Report UCAM-CL-TR-630, Univer-
sity of Cambridge, 2010.

[356] Sergei P. Skorobogatov. Low temperature data remanence in static
ram. University of Cambridge, Computer Laboratory, 2002.

[357] Sergei P. Skorobogatov. Optical fault injection attacks. Cryptographic
Hardware and Embedded Systems (CHES), pages 2–12, 2010.

[358] Sergei P. Skorobogatov and Ross J. Anderson. Semi-invasive attacks –
a new approach to hardware security analysis. In Cryptographic Hard-
ware and Embedded Systems – CHES 2005, pages 1–23. Springer, 2005.

[359] Liwei Song, Xinwei Yu, Hsuan-Tung Peng, and Karthik Narasimhan.
Universal adversarial attacks with natural triggers for text classifica-
tion. arXiv preprint arXiv:2005.00174, 2020.

[360] Paul Song. SPARC Architecture, Assembly Language Programming,
and C. Prentice Hall, 1999.

[361] E Songhori, H Siam, and S Riazi. Tinygarble framework.
[Online]https://github.com/esonghori/TinyGarble [Accessed
Jan.30, 2023], 2019.

278

[Online]https://github.com/esonghori/TinyGarble

[362] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, Thomas
Schneider, and Farinaz Koushanfar. Tinygarble: Highly compressed
and scalable sequential garbled circuits. In 2015 IEEE Symp. on Secu-
rity and Privacy, pages 411–428. IEEE, 2015.

[363] Ebrahim M Songhori, M Sadegh Riazi, Siam U Hussain, Ahmad-Reza
Sadeghi, and Farinaz Koushanfar. Arm2gc: Succinct garbled processor
for secure computation. In Proc. of the 56th Annual Design Automation
Conf. 2019, pages 1–6, 2019.

[364] Ebrahim M Songhori, Thomas Schneider, Shaza Zeitouni, Ahmad-
Reza Sadeghi, Ghada Dessouky, and Farinaz Koushanfar. Garbled-
cpu: A mips processor for secure computation in hardware. In 2016
53nd ACM/EDAC/IEEE Design Automation Conf. (DAC), pages 1–6.
IEEE, 2016.

[365] Wenting Zheng Srinivasan, PMRL Akshayaram, and Popa Raluca Ada.
Delphi: A cryptographic inference service for neural networks. In Proc.
29th USENIX Secur. Symp, pages 2505–2522, 2019.

[366] Richard M. Stallman and the GCC Developer Community. Using the
GNU Compiler Collection (GCC). Free Software Foundation, Boston,
MA, USA, 1998.

[367] François-Xavier Standaert. How (not) to use welch’s t-test in side-
channel security evaluations. In Intrl. Conf. on smart card research
and advanced applications, pages 65–79. Springer, 2018.

[368] François-Xavier Standaert and Cédric Archambeau. Using subspace-
based template attacks to compare and combine power and electromag-
netic information leakages. In Intrl. WKSP on Cryptographic Hardware
and Embedded Systems, pages 411–425. Springer, 2008.

[369] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified
framework for the analysis of side-channel key recovery attacks. In
Annual Intrl. Conf. on the Theory and Applications of Cryptographic
Techniques, pages 443–461. Springer, 2009.

[370] François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques
Quisquater, Moti Yung, and Elisabeth Oswald. Leakage resilient cryp-

279

tography in practice. In Towards Hardware-Intrinsic Security, pages
99–134. Springer, 2010.

[371] Hugo Steinhaus. Sur la division des corps matériels en parties. Bulletin
de l’Académie Polonaise des Sciences, 4:801–804, 1956.

[372] Franz-Josef Streit, Florian Fritz, Andreas Becher, Stefan Wilder-
mann, Stefan Werner, Martin Schmidt-Korth, Michael Pschyklenk, and
Jürgen Teich. Secure boot from non-volatile memory for programmable
soc architectures. https://arxiv.org/abs/2004.09453, 2020. Ac-
cessed: 2025-04-17.

[373] Pramod Subramanyan, Shubhajit Ray, and Sharad Malik. Evaluating
the security of logic encryption algorithms. In 2015 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages
137–143. IEEE, 2015.

[374] Jingjing Sun, Xiaoxiao Xu, and Minghao Li. Advancing intercon-
nect technology for chiplet architectures. Journal of Microelectronics,
102:56–69, 2022.

[375] Xiaoqiang Sun, F Richard Yu, Peng Zhang, Zhiwei Sun, Weixin Xie,
and Xiang Peng. A survey on zero-knowledge proof in blockchain. IEEE
network, 35(4):198–205, 2021.

[376] Yung-Chang Sun, Tsung-Yu Tsai, and Yi-Ching Wu. Heteroge-
neous integration technology for advanced computing. Micromachines,
9(11):562, 2018.

[377] Shahin Tajik, Pascal Sasdrich, and Amir Moradi. Artificial intelligence
security: Fault injection against neural networks. In IEEE Interna-
tional Conference on Artificial Intelligence Security (AISec), 2022.

[378] Shahin Tajik and Jean-Pierre Seifert. Power glitch attacks on fpga-
based systems: Survey and new results on a secure sram-based puf.
In International Conference on Smart Card Research and Advanced
Applications (CARDIS), pages 115–130, 2017.

[379] Sijun Tan, Brian Knott, Yuan Tian, and David J Wu. Cryptgpu: Fast
privacy-preserving machine learning on the gpu. In 2021 IEEE Sym-
posium on Security and Privacy (SP), pages 1021–1038. IEEE, 2021.

280

https://arxiv.org/abs/2004.09453

[380] Zhi Tang, Qian Wang, Peng Liu, and Xiapu Luo. Power side channels
in usb chargers. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 1105–1121. IEEE, 2017.

[381] Teledyne LeCroy. WavePro 254HD High Definition Oscilloscope User
Guide. Teledyne LeCroy, 2022. User Manual.

[382] Lu Tian, Bargav Jayaraman, Quanquan Gu, and David Evans. Aggre-
gating private sparse learning models using multi-party computation.
In NIPS Workshop on Private Multi-Party Machine Learning, 2016.

[383] Meng Tian and Qian Zhao. Security challenges in chiplet-based sys-
tems. IEEE Embedded Systems Letters, 11(2):56–59, 2019.

[384] Niek Timmers, Alessandro Barenghi, Francesco Regazzoni, Elena
Dubrova, Cristiano Giuffrida, and Herbert Bos. Controlling pc on arm
using fault injection. In Proceedings of the 2016 Workshop on Fault Di-
agnosis and Tolerance in Cryptography (FDTC), pages 25–35. IEEE,
2016.

[385] Kris Tiri and Ingrid Verbauwhede. A dynamic and differential cmos
logic with signal independent power consumption to withstand dif-
ferential power analysis on smart cards. In Proceedings of the 28th
European Solid-State Circuits Conference (ESSCIRC), pages 403–406.
IEEE, 2005.

[386] M. Caner Tol, Saad Islam, Andrew J. Adiletta, Berk Sunar, and Ziming
Zhang. Don’t knock! rowhammer at the backdoor of dnn models. arXiv
preprint arXiv:2110.07683, 2021.

[387] M. Toorani and A. A. Beheshti. An elliptic curve-based signcryption
scheme with forward secrecy. arXiv:1005.1856, 2010.

[388] Randy Torrance and Dick James. The state-of-the-art in ic reverse
engineering. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 363–381. Springer, 2009.

[389] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. Stealing machine learning models via prediction APIs. In
25th USENIX Security Symposium (USENIX Security 16), pages 601–
618. USENIX Association, 2016.

281

[390] Michael Tunstall, Debdeep Mukhopadhyay, and Luca Breveglieri. Dif-
ferential fault analysis of aes and fault countermeasures. In Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems
(CHES), pages 112–124, 2011.

[391] Thinh Van and Xue Zhang. Secure enclaves for chiplet-based ai ac-
celerators. IEEE Transactions on Secure Systems, 26(6):1011–1024,
2021.

[392] Wim Van Eck. Compromising emanations: Eavesdropping risks of
computer displays. Computers & Security, 4(4):269–286, 1985.

[393] Kush R. Varshney, Julia Rogers, Peder Olsen, Roman M. Garnett,
Jeffrey W. Scovell, and Katy Börner. Privacy-preserving data sharing
in public health: Methods for secure multiparty computation. Annual
Review of Public Health, 38:439–459, 2017.

[394] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems
(NeurIPS), pages 5998–6008, 2017.

[395] Arunkumar Vijayakumar, Vinay C. Patil, Daniel E. Holcomb, Christof
Paar, and Sandip Kundu. Physical design obfuscation of hardware:
A comprehensive investigation of device- and logic-level techniques.
arXiv:1910.00981, 2019.

[396] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushile-
vitz, Prateek Mittal, and Tal Rabin. Falcon: Honest-majority ma-
liciously secure framework for private deep learning. arXiv preprint
arXiv:2004.02229, 2020.

[397] Alex Wagner, Yehuda Lindell, Orr Dunkelman, and Ran Canetti.
Scapi: The secure computation api. In International Conference on Se-
curity and Cryptography for Networks (SCN), pages 515–535. Springer,
2018.

[398] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal
Viswanath, Haitao Zheng, and Ben Y Zhao. Neural cleanse: Iden-
tifying and mitigating backdoor attacks in neural networks. In 2019

282

IEEE Symposium on Security and Privacy (SP), pages 707–723. IEEE,
2019.

[399] J Wang and P Patel. Universal chiplet interconnect express (ucie): A
standard for chiplet ecosystems. IEEE Micro, 43(1):14–24, 2023.

[400] Ke Wang, Yang Yang, Lin Lin, and Wei Wang. Exclusive cache per-
formance optimization for emerging workloads. In Proceedings of the
IEEE International Conference on Computer Design (ICCD), pages
1–8. IEEE, 2019.

[401] Xiao Wang, S. Dov Gordon, Allen McIntosh, and Jonathan Katz. Se-
cure computation of mips machine code. In European Symp. on Re-
search in Computer Security, pages 99–117. Springer, 2016.

[402] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated
garbling and efficient maliciously secure two-party computation. In
Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pages 21–37, 2017.

[403] Alexander Warnecke, Julian Speith, Jan-Niklas Möller, Konrad Rieck,
and Christof Paar. Evil from within: Machine learning backdoors
through hardware trojans. arXiv preprint arXiv:2304.08411, 2023.

[404] Samuel Weiser, Mario Werner, Daniel Gruss, Clémentine Maurice, and
Stefan Mangard. Sgxjail: Defeating enclave malware via confinement.
In Proceedings of the 10th ACM Conference on Security and Privacy
in Wireless and Mobile Networks, pages 151–162. ACM, 2018.

[405] Carolyn Whitnall and Elisabeth Oswald. Robust profiling for DPA-
style attacks. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 3–21. Springer, 2015.

[406] Markus G. J. Witteman, Jasper van Woudenberg, and Erik Bakker.
Secure programming in the presence of fault attacks. In Proceedings of
the 2008 International Conference on Embedded Systems and Applica-
tions (ESA), pages 1–7, 2008.

[407] Gary Workman. Physical defects and their modeling. Springer, 1998.

283

[408] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. Elim-
inating timing side-channel leaks using program repair. In Proceed-
ings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 15–26, 2018.

[409] Inc. Xilinx. v2021.1. [Online]https://www.xilinx.com/products/

design-tools/vivado.html [Accessed: Oct.16, 2024], 2021.

[410] Inc. Xilinx. v2022.1. [Online]https://docs.xilinx.com/v/u/

en-US/ug1416-vitis-documentation.html [Accessed: Oct.16, 2024],
2022.

[411] Inc. Xilinx. Vivado Design Suite User Guide, 2023.

[412] Guowen Xu, Xingshuo Han, Tianwei Zhang, Shengmin Xu, Jianting
Ning, Xinyi Huang, Hongwei Li, and Robert H Deng. Simc 2.0: Im-
proved secure ml inference against malicious clients. IEEE Transactions
on Dependable and Secure Computing, 2023.

[413] Ling Xu and Peng Zhao. Secure monitoring and attestation in heteroge-
neous chiplets. IEEE Transactions on Secure Computing, 32(1):99–117,
2023.

[414] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and
Bo Li. Detecting ai trojans using meta neural analysis. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 103–120. IEEE, 2021.

[415] Xuan Xu, Jeyavijayan Rajendran, Hao Zhang, and Ramesh Karri. A
novel bypass attack and bdd-based tradeoff analysis against all known
logic locking attacks. In International Conference on Cryptographic
Hardware and Embedded Systems, pages 189–210. Springer, 2017.

[416] Mengjia Yan and Moinuddin K. Qureshi. New attacks and defense
for encrypted-address cache. In Proceedings of the 46th International
Symposium on Computer Architecture, pages 360–373. ACM, 2019.

[417] Andrew C Yao. Protocols for secure computations. 23rd Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 160–164,
1982.

284

[Online] https://www.xilinx.com/products/design-tools/vivado.html
[Online] https://www.xilinx.com/products/design-tools/vivado.html
[Online] https://docs.xilinx.com/v/u/en-US/ug1416-vitis-documentation.html
[Online] https://docs.xilinx.com/v/u/en-US/ug1416-vitis-documentation.html

[418] Andrew Chi-Chih Yao. How to generate and exchange secrets. In
Foundations of Computer Science (FOCS), pages 162–167, 1986.

[419] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th
Annual Symp. on Foundations of Computer Science (sfcs 1986), pages
162–167. IEEE, 1986.

[420] Fan Yao, Adnan Siraj Rakin, and Deliang Fan. Deephammer: Deplet-
ing the intelligence of deep neural networks through targeted chain of
bit flips. arXiv preprint arXiv:2003.13746, 2020.

[421] Yuval Yarom and Katrina Falkner. Flush+ reload: A high resolution,
low noise, l3 cache side-channel attack. In 23rd {USENIX} Security
Symposium ({USENIX} Security 14), pages 719–732, 2014.

[422] Yuval Yarom and Katrina Falkner. Flush+reload: A high resolution,
low noise, l3 cache side-channel attack. In Proceedings of the 23rd
USENIX Security Symposium, pages 719–732, 2014.

[423] Yuval Yarom and Katrina Falkner. Flush+reload: A high resolu-
tion, low noise, l3 cache side-channel attack. Proceedings of the 23rd
USENIX Security Symposium, pages 719–732, 2014.

[424] Bei Yu, Yibo He, Mei Li, Jun Li, Lei Wang, Renjie Song, and Qiang
Xu. Hardware intellectual property protection: Techniques and coun-
termeasures. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 25(2):1–27, 2020.

[425] Jing Yuan, Wei Zhang, and Shankar Kumar. Secure design method-
ologies for heterogeneous chiplet integration. Journal of Hardware and
Systems Security, 5(2):89–107, 2021.

[426] S Zahur, G Kerneis, and G Necula. Obliv-C secure computation
compiler. [Online]https://github.com/samee/obliv-c [Accessed
Feb.2, 2023], 2018.

[427] Samee Zahur and David Evans. Obliv-C: A language for extensible
data-oblivious computation. Cryptology ePrint Archive, 2015.

[428] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a
whole. In Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pages 220–250. Springer, 2015.

285

[Online] https://github.com/samee/obliv-c

[429] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a
whole: Reducing data transfer in garbled circuits using half gates.
In Advances in Cryptology – EUROCRYPT 2015, pages 220–250.
Springer, 2015.

[430] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and
Yang Liu. Batchcrypt: Efficient homomorphic encryption for cross-
silo federated learning. In Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC 2020), 2020.

[431] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals. Understanding deep learning requires rethinking gener-
alization. arXiv preprint arXiv:1611.03530, 2016.

[432] Jian Zhang, Xiaofei Wang, and Fengjun Zhang. Privacy-preserving ma-
chine learning: Applications and challenges. IEEE Security & Privacy,
19(2):14–23, 2021.

[433] Wei Zhang and Hong Li. Chiplet security vulnerabilities and mitigation
strategies. IEEE Design & Test, 40(2):112–127, 2023.

[434] Yao Zhang, Mingyu Gao, and Jason Cong. Hardware-accelerated secure
function evaluation with partial garbled circuits. In Proceedings of
the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), page partial pagination—please confirm from proceedings.
IEEE, 2011.

[435] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-vm side channels and their use to extract private keys. In ACM
Conference on Computer and Communications Security (CCS), pages
305–316, 2012.

[436] Yu Zhang, Farinaz Koushanfar, and Siddharth Garg. Em attacks on
machine learning algorithms: A systematic study of modern neural
networks. IEEE Transactions on Information Forensics and Security,
15:2542–2556, 2020.

[437] Haochen Zhao and Xiao Wang. Silent Oblivious Transfer and Efficient
Private Set Intersection. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 785–802. IEEE, 2020.

286

[438] Li Zhao, Ravi Iyer, Srihari Makineni, Don Newell, and Liqun Cheng.
Ncid: a non-inclusive cache, inclusive directory architecture for flex-
ible and efficient cache hierarchies. In Proceedings of the 7th ACM
international conference on Computing frontiers, pages 121–130, 2010.

[439] Mark Zhao and G Edward Suh. Fpga-based remote power side-channel
attacks. In 2018 IEEE Symp. on Security and Privacy (SP), pages 229–
244. IEEE, 2018.

[440] Xuanqiang Zhao, Benchi Zhao, Zihan Xia, and Xin Wang. Information
recoverability of noisy quantum states. Quantum, 7:978, April 2023.

[441] Zirui Neil Zhao, Adam Morrison, Christopher W Fletcher, and Josep
Torrellas. Last-level cache side-channel attacks are feasible in the mod-
ern public cloud. arXiv preprint arXiv:2405.12469, 2024.

[442] Zhaoji Zhou, Hongbo Li, and Weiqiang Wang. Design and analysis of
side-channel attack based on crosstalk. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 27(12):2846–2857, 2019.

[443] Zhiqiang Zhou, Xin Wang, and Chenchen Wu. Magnetic sensor based
side-channel attack on cryptographic hardware. In 2019 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), pages
984–989. IEEE, 2019.

[444] Tianqi Zhuang, Meng Shen, Aniello Castiglione, and Gang Wang. Se-
curity vulnerabilities and risks in the ieee p1735 standard for protect-
ing electronic-design intellectual property. In Proceedings of the 2019
IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), pages 151–161, 2019.

287

.1 A detailed report of leaky IF conditions

Table 1 contains details of leaky IF conditions in each function of TinyGar-
ble [361], EMP-toolkit [246], Obliv-C [427], and ABY [95].

288

Table 1: A detailed report of leaky IF conditions (IF) of every function call in
JustGarble [34], TinyGarble [361] with half-gate and free-XOR optimization,
EMP-toolkit [246], Obliv-C [427], and ABY [95].

Framework Function IF Framework Function IF

TinyGarble
(half-gate)

[361]

GarbledLowMem 0

JustGarble
[187]

createNewWire 0
GarbledGate 2 TRUNCATE 0

ParseInitInputStr 0 TRUNC COPY 0
RemoveGarbledCircuit 0 getNextId 0

HalfGarbleGateKnownValue 0 getFreshId 0
NumOfNonXor 0 getNextWire 0

HalfGarbleGate 2 createEmptyGarbledCircuit 0
InvertSecretValue 0 removeGarbledCircuit 0

XorSecret 0 startBuilding 0
OutputBN2StrLowMem 0 finishBuilding 2

RandomBlock 0 extractLabels 0
Total 4 garbleCircuit 8

TinyGarble
(free-XOR)

[361]

GarbledLowMem 2 blockEqual 0
GarbledGate 5 mapOutputs 0

ParseInitInputStr 0 createInputLabels 0
RemoveGarbledCircuit 0 randomBlock 0

NumOfNonXor 0 xorBlocks 0
XorSecret 0 findGatesWithMatchingInputs 1

OutputBN2StrLowMem 0 Total 11
RandomBlock 0

EMP-toolkit
[246]

HalfGateGen 0
Total 7 parse party and port 0

Obliv-C
[427]

yaoGenerateGate 3 NetIO 0
yaoGenrRevealOblivBits 0 Total 0
yaoGenrFeedOblivInputs 1

ABY
[95]

YaoSharingInit 0
yaoKeyNewPair 0 BooleanCircuit 0
yaoSetBitAnd 0 init aes key 0
yaoSetBitOr 0 ceil divide 0
yaoSetBitXor 0 clean aes key 0
yaoFlipBit 0 EncryptWire 0

yaoSetHashMask 0 EncryptWireGRR3 0
yaoSetHalfMask 0 PrintKey 0
yaoSetHalfMask2 0 PrintPerformanceStatistics 0
yaoKeyDouble 0 XOR DOUBLE B 0

Total 4 Total 0

289

	Publications
	Contribution
	Publication 1
	Publication 2
	Publication 3
	Publication 4
	Publication 5
	Publication 6
	Publication 7

	Introduction
	Motivation
	The Expanding Threat Landscape in Secure Computation
	MPC as a Secure Computation Model
	Challenges in Secure Implementations: Side-Channel and Fault Attacks

	Research Contributions and Scope
	Summarizing the Key Gaps in Prior Work

	Dissertation Organization
	Discussion

	Chapter 4: Background and Preliminaries
	Secure Function Evaluation and Private Function Evaluation
	Definition of SFE and PFE

	Yao’s GC
	Mathematical Definition of GC
	Garbling Process
	Evaluation Process

	Optimizations of GC
	Free-XOR Optimization
	Half-Gates Optimization
	Row Reduction Optimization

	Oblivious Transfer
	Adversary Models in Secure Computation
	Passive and Honest-but-Curious Adversary Model
	Active and Malicious Adversary Model

	Side-Channel Attacks: Leakage Sources and Analysis
	Side-Channel Leakage: Sources and Classification

	Side-Channel Attacks and Evaluation
	Differential Power Analysis

	Side-Channel Evaluation Techniques
	Welch’s t-Test for Leakage Detection

	Fault Injection Attacks
	Mathematical Model of Fault Injection
	Types of Fault Injection Attacks
	Fault Injection Methods

	Cache Architecture
	Cache Hierarchy and Levels
	Cache Inclusion Policies
	Cache Coherence in Multi-Core Processors
	Cache Replacement and Eviction Policies
	Memory Access and Prefetching Mechanisms

	Neural Networks: Foundations and Architectures
	Feedforward and Deep Neural Networks
	Training Neural Networks: Backpropagation and Optimization
	Activation Functions and Their Role
	Convolutional Neural Networks
	Neural Network Architectures and Applications

	Clustering
	Chiplet-based Processing
	Introduction to Chiplet Architectures
	Security Threats in Chiplet-based Systems
	Trusted Execution in Multi-Chip Modules

	Chapter 5: Literature Review
	Overview of Secure Computation Approaches
	Secure MPC
	Garbled Circuits
	Oblivious Transfer

	Survey of Side-Channel and Fault Injection Attacks on Secure Computation
	Side-Channel Attacks on Secure Computation
	FIAs on Secure Computation
	Impact of Side-Channel and FIAs on Secure Computation

	Masking and Hiding Techniques
	Power Analysis and EM Hiding Countermeasures
	Instruction-Level Obfuscation
	Limitations and Practical Challenges

	Garbled Circuit and Secure/Private Function Evaluation
	Garbled Accelerators

	Zero-Knowledge Proofs and Hybrid Secure Computation Approaches
	Zero-Knowledge Proofs for Secure Computation
	Hybrid Cryptographic Approaches

	MPC for IP Protection
	Motivation
	GarbledEDA: Privacy-Preserving Electronic Design Automation
	Methodology
	Secure Computation for IP Protection
	GarbledEDA Implementation Flow
	Optimizing Performance and Hardware Utilization
	GarbledEDA Simulator Implementation Flow
	Evaluation Setup
	Resource Utilization Evaluation
	GarbledEDA with a Selector
	GarbledEDA with an Improved Hardware Resource Efficiency Evaluation
	GarbledEDA Execution Time and Peak Memory Cost Evaluation

	GuardianMPC: Backdoor-resilient Neural Network Computation
	Backdoor Attacks in DL Pipeline
	Targets of Malicious Adversaries in Garbled Circuits
	Our Adversary Model
	Similarities between Adversarial Models
	GuardianMPC Flow
	Protection Against Malicious Adversaries
	Efficient Execution with Hardware Acceleration
	Experimental Setup

	Discussion

	Side-Channel Attacks Against Hardware Implementations
	Motivation
	Bake It Till You Make It: Heat-induced power leakage from masked NN
	Heat-Induced Power Leakage in Secure Computation
	Inducing Leakage through Internal Heat Generators
	Experimental Results
	Leakage Detection
	Key Guesses and Attack Success Rate
	Implications for Secure Hardware Design

	HWGN2: Side-channel Protected Neural Network through Secure and Private Function Evaluation
	Adversary Model
	Side-Channel Attack Scenario
	HWGN2 Countermeasures Against SCA
	Core Architecture of HWGN2
	Side-Channel Resiliency Implementation and Evaluation
	TinyGarble-based Implementation of HWGN2
	HWGN2 with Improved Hardware Resource Utilization Efficiency
	Garbled MIPS Evaluator
	Hardware Implementation Resource Utilization
	Execution Time and Communication Cost Evaluation
	Side-Channel Evaluation
	TVLA Test Evaluation of Power Side-Channel
	TVLA Test Evaluation of EM Side-Channel
	Architecture-Related Leakage Analysis

	Garblet: MPC for Protecting Chiplet-based Systems
	Adversary Model in Chiplet-Based Secure Computation
	Methodology
	Oblivious Transfer Implementation
	Evaluator Engine Implementation
	Sub-circuit Assignment: Advantages and Process
	Chiplet-based GC Implementation Flow
	Experimental Results
	Acceleration Using Multiple Garbling/Evaluator Engines

	Timing Side-Channel Attacks on Secure Computation
	Goblin and Its Building Blocks
	Our Eviction Method: Junk Generator
	Measuring Execution Time on CPUs
	Recovering Garbler's Input
	Performance Metric
	Experimental Results
	Scalability of Goblin
	Impact of the Number of Traces

	Discussion

	Fault Injection Attacks Against Hardware Implementations
	Motivation
	FaultyGarble: Fault Attack on Secure MPC NN Inference
	Fault Injection Attacks: Techniques and Impact
	Fault Injection and Active Attacks Against Secure Computation
	Protection Against Fault Injection Attacks
	Adversary Model
	Methodology
	Fault Injection in Garbled NN Inference Engines
	Fault Injection in the Decoded Instruction of the NN Model
	Experimental Setup
	Laser Fault Injection Setup
	Results
	Complexity of the Attack: Number of Faults and Queries
	Simulation Results

	Discussion

	Discussion and Future Work
	Lessons Learned from Secure Hardware Implementations
	Future Directions in Secure and Private Implementation of MPC
	Overcoming Computational and Communication Overhead
	Stronger Resilience Against Fault and Side-Channel Attacks
	Scalability in Chiplet-Based Architectures

	A detailed report of leaky IF conditions

